Yeshwantrao Chavan College of Engineering, Nagpur

PO/PSO and CO's of all courses of the PG Programme

Session 2020-2021

Name of the Department: Electrical Engineering

Name of the PG Programme: M.Tech. in Intergrated Power System

Programme Outcomes (PO)

- A. To demonstrate in-depth knowledge of power system and allied fields.
- B. To carry out research work with independent and introspective learning
- C. To apply appropriate modern engineering and software tools to power system.
- D. To think critically to indentify, conceive, analyse and solve complex engineering problems in power and energy sector.
- E. To communicate effectively and acquire professional, ethical and responsible attitude towards sustainable development of the society.
- F. To accept and adapt to the technological changes for lifelong learning with enthusiasm and commitment to improve knowledge and competence continuously.
- G. To demonstrate capacity for self-management, project & finance management and decision making to achieve common goals.

Programme Specific Outcomes (PSO)

PSO1: -

PSO2:-

Course Outcomes (CO):

First Year: Semester I:

Course Name: Advar	nced Power Electronics (T/P)	Course Code: EL3901/EL3902
CO1	Apply knowledge of the power se	miconductor devices, to select them
	for a range of applications.	
CO2	Demonstrate and analyze technique	ues to design and assess the
	performance of thyristor-based co	onverters, as well as, switch-mode
	DC/DC power electronic converters, resonant and DC/AC inverters.	
CO3	Assess power quality specially, p	ower factor and harmonic issues
	of various power electronic conv	erters/inverters.
CO4	Analyze different modulation tech	nniques for bridge as well as
	multilevel inverters.5.Design,simu	ulate, and test various
	converter/inverter circuits in the la	aboratory.(Lab component)

Course Name: Analog	g & Digital Protection (T/P)	Course Code: EL3903/EL3904
CO1	Explain & amp; design protection scheme for Relay Coordination	
CO2	Develop, Compare & compare & compare between the problems of over current and distance protection	
CO3	Explain and define the basics tern	ns of Digital Protection
CO4	Compare and solve the different r	nethods and techniques of digital

	protection	
CO5	Explain and justify the recent advances in digital protection	

Course Name: Digita	l Control System (T)	Course Code: EL3905
CO1	Recall and explain the basics of discrete time signals.	
CO2	Apply and solve Z transforms	method for discrete systems and
	analyse the stability of digital con	trol system.
CO3	Understand the preliminary concept of state variable analysis of	
	discrete time control systems, pole placement and design through	
	state feedback.	
CO4	Select the PID parameters through	gh tuning and make use of optimal
	control for design.	

Course Name: HVDC	C Power Transmission (T)	Course Code: EL3906
CO1	Recall the principles, advantages	and applications of a HVDC link.
CO2	Explain the operation of converter	rs in a classical HVDC link and
	modern VSCHVDC technology.	
CO3	Model valve and converter for simulation.	
CO4	List various methods of control and protection, various faults,	
	stability aspects relevant to HVD	C system.

Course Name: Power	· System Modelling (T)	Course Code: EL3907
CO1	Understand the general constructi	on and relationship between the
	various fluxes of various electrica	l machines and its impact on
	induced emf during the small and	transient disturbances.
CO2	Analyze the electrical machines in	n stationary and rotary frame of
	reference in per unit for stability analysis.	
CO3	Evaluate the electrical machine pa	arameters for various power system
	components under static and dyna	mic load conditions.
CO4	Create mathematical models for s	tationary and rotating machines
	under steady state and transient co	onditions.

Course Name: PE I: Electrical Drives and Controls		Course Code: EL3908/EL3909	
(T / P)			
CO1	Explain the working of DC motor,	Induction motor, synchronous	
	motor, brushless DC motor and Sw	vitched reluctance motors	
CO2	Analyse operation of DC motor, In	Analyse operation of DC motor, Induction motor, synchronous	
	motor, brushless DC motor and Switched reluctance motors.		
CO3	Choose suitable converters for DC motor, Induction motor,		
	synchronous motor, brushless DC motor and Switched reluctance		
	motors.		
CO4	Solve numericals on DC motor, Inc	duction motor, synchronous motor.	

Course Name: PE I: Renewable Energy System (T/P)		Course Code: EL3910/EL3911
CO1	Apply knowledge of renewable er	nergy sources to various solar, wind
	and other systems	
CO2	Demonstrate and analyze technique	les to design and assess the

	performance of solar PV panels and solar based energy converters
CO3	Assess the output of renewable energy systems under different environmental conditions
CO4	Analyze the performance of different renewable energy sources like solar, wind, geothermal and hybrid sources

First Year: Semester II:

Course Name: Power	System Planning (T)Course Code: EL3915	
CO1	Illustrate various regulations by state and central government for	
	energy generation and supply and apply them for planning integrated	
	power system.	
CO2	Develop and examine the role of investors in a power plant portfolio	
	for sustainable development	
CO3	Interpret the load forecasting and recommend the generation,	
	transmission, and distribution capacities for integrated power system	
	considering economical, reliable and optimal usage for sustainable	
	development.	
CO4	Predict the behavior of integrated power system for secure and	
	reliable operation.	

		Course Code: EL3916
Electronics to Power	System (T)	
CO1	Demonstrate the knowledge	e of AC transmission constraints and
	decide the power electronic	s-based solutions.
CO2	Design and assess the performance of shunt and series thyristor-	
	based controllers.	
CO3	Interpret and compare the performance of various converter –based	
	controllers	
CO4	Analyze different control techniques for shunt/series/shunt-series	
	and series-series controller	s.

Course Name: Power	· Quality (T)	Course Code: EL3917
CO1	Define, discuss and analyse the various power quality problem, their	
	causes and effects in distribution system	
CO2	Identify, discuss and analys	e the different non-linear loads.
CO3	Define, explain, apply varie	ous measurements and transforms to
	analyse the power quality problems.	
CO4	Describe, analyse and calculate the powers, harmonics indices and	
	sequence components.	
CO5	Explain, apply the various i	ndices and develop load balancing
	algorithms.	
CO6	Discuss, analyse, apply the	various custom power devices, their
	reference generation algorit	hms and their applications.

Course Name: PE II:	EHV Power	Course Code: EL3919
Transmission (T)		
CO1	List various aspects of EHV	AC Transmission.
CO2	Develop knowledge to calculate various parameters related to EHV Transmission line.	
CO3	Explain voltage gradient concept pertaining to conductors of the EHV Transmission line.	
CO4	Discuss various effects of E life.	HVAC Transmission related to human

Course Name: PE II: Restructuring of Power		Course Code: EL3920
System (T)		
CO1	Discuss deregulation of electricity market.	
CO2	Classify, illustrate different processes and operations in deregulation.	
CO3	Explain, apply solution techniques for optimal power flow.	
CO4	Discuss automation in energy management and communication	
	technologies in power syste	m.

Course Name: PE IV	: Power Electronics for	Course Code: EL3926
Renewable Energy Sy	ystems (T)	
CO1	Describe the impact and significances of different renewable energy	
	sources.	
CO2	Explain solar thermal and solar photovoltaic applications	
CO3	Describe and analyse the various solar photovoltaic inverters	
	topologies and configurations, and characteristics.	
CO4	Discuss and categorize wind energy conversion systems based on the generators, controls and operation.	
CO5	Examine and apply various power converters for Wind energy systems and its controls.	
CO6		l of hybrid systems, discuss its various power quality issues in grid integrations.

Course Name: PE IV	: Control System Design	Course Code: EL3927
(T)		
CO1	Recall and explain the basi	cs of conventional design method in time
	and frequency domain.	
CO2	Apply and solve problems for design of discrete systems and analyse	
	the stability of digital control	ol system.
CO3	Understand the preliminar	y concept of discrete time state variable
	analysis pole placement and	l design through state feedback.
CO4	Explain the concepts of	optimal control formulation of optimal
	control.	

Course Name: Power (P)	• System Simulation	Course Code: EL3928
CO1	Solve and design the power system problems.	
CO2	Explain, compare various pulse width modulations and apply to	

	different converter topologies	
CO3	Use and evaluate the load balancing for compensation.	
CO4	Design and analyse the renewable energy sources.	
CO5	Design the various controls and its application in power system.	
CO6	Apply and infer the performance of compensators in power system.	

Course Name: Power	System Design (P)	Course Code: EL3929
CO1	Identify and explain the various aspects AC and DC power	
	transmission systems.	
CO2	Design and assess the performance of AC transmission system	
CO3	Develop optimized and rob	oust HVDC transmission systems and
	evaluate the significance of the various parameters.	

Second Year: Semester III:

Course Name: Pr	oject Phase -I	Course Code: EL3939	
CO1	Identify research topic		
CO2	Carryout literature surve	Carryout literature survey	
CO3	Analyze and solve the real	Analyze and solve the research problem	
CO4	Learn and use the suitabl	Learn and use the suitable software tool	
	To communicate effectiv	To communicate effectively with proper presentation methods	

Second Year: Semester IV:

Course Name: Project	et Phase -II	Course Code: EL3940
CO1	Analyze the system and achieve desired results using	
	software/hardware tools	
CO2	Write and present the research paper based on project work	
CO3	Acquire in-depth knowledge of the subject for the benefit of the society	