Nagar Yuwak Shikshan Sanstha's

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) (Accredited 'A' Grade by NAAC with a score of 3.25) Hingna Road, Wanadongri, Nagpur - 441 110

SoE & Syllabus 2019 M.Tech. Integrated Power System(IPS)

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M. Tech. SCHEME OF EXAMINATION 2019 Integrated Power Systems (IPS)

SN	Sem	Sub Code	Sub Code Subject	T/P	С	ontac	t Hou	rs	Credits	% Weightage			ESE Duration
					L	т	Р	Hrs		MSEs*	TA **	ESE	Hours
	I SEMESTER												
1	1	EL3901	Advanced Power Electronics	Т	3	0	0	3	3	30	30	40	3
2	1	EL3902	Lab: Advanced Power Electronics	Р	0	0	4	4	2		60	40	
3	1	EL3903	Analog & Digital Protection	Т	3	0	0	3	3	30	30	40	3
4	1	EL3904	Lab: Analog & Digital Protection	Р	0	0	4	4	2		60	40	
5	1	EL3905	Digital Control System	Т	3	0	0	3	3	30	30	40	3
6	1	EL3906	HVDC Power Transmission	Т	3	0	0	3	3	30	30	40	3
7	1	EL3907	Power System Modeling	Т	3	0	0	3	3	30	30	40	3
8	1		Professional Elective- I	Т	3	0	0	3	3	30	30	40	3
9	1		Lab: Professional Elective I	Р	0	0	4	4	2		60	40	
	Total						12	30	24				

List of Professional Electives-I

1	EL3908	PE I: Electrical Drives and Controls				
1	EL3909	I: Lab: Electrical Drives and Controls				
1	EL3910	I: Renewable Energy System				
1	EL3911	PE I: Lab: Renewable Energy System				

	II SEMESTER												
1	2	EL3915	Power System planning	Т	3	0	0	3	3	30	30	40	3
2	2	EL3916	6 Applications of Power Electronics to Power T System			0	0	3	3	30	30	40	3
3	2	EL3917	Power Quality	Т	3	0	0	3	3	30	30	40	3
4	2		Professional Elective II	Т	3	0	0	3	3	30	30	40	3
5	2		Professional Elective - III	Т	3	0	0	3	3	30	30	40	3
6	2		Professional Elective - IV	Т	3	0	0	3	3	30	30	40	3
7	2	EL3928	Lab.: Power System Simulation	Р	0	0	4	4	2		60	40	
8	2	EL3929	Lab.: Power System Design	Р	0	0	4	4	2		60	40	
			Total	18	0	8	26	22					

List of Professional Electives-II

2	EL3918	E II: Advanced Digital Signal Processing				
2	EL3919	II: EHV Power Transmission				
2	EL3920	II: Restructuring of Power System				
2	EL3930	E II: Wide Area Monitoring and Control				
2	EL3931	PE II: Microgrid				

List of Professional Electives-III

2	EL3921	PE III : Power System Stability					
2	EL3922	E III : Electrical Distribution Systems					
2	EL3923	III : Power System Operation and Control					
2	EL3924	E III : Transients in Power Systems					
2	EL3932	PE III : Solar System Design					

List of Professional Electives-IV

Γ	2	EL3925	PE IV: Distributed Automation
ſ	2	EL3926	PE IV: Power Electronics for Renewable Energy Systems
	2	EL3927	PE IV: Control System Design

	III SEMESTER											
1	3	EL3939	Project Phase -I	Р	0	0	16	0	8	100		
	Total 0 0 16 0 8											

IV SEMESTER											
1 4	EL3940	Project Phase-II	Р	0	0	20	24	12	60	40	
Total 0 0 20 24								12			
	Grand Total of Credits 66										
MSEs* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment TA**= 20 Marks on Quiz and 10 Marks on teachers assessment											
Shell	au.	de	June 2020		1.01			Applicable for AY 2020-21 Onwards			
Chairp	person	Dean (Acad. Matters)	Date of Release		Date of Release Version				al us		

Integrated Power System(IPS)

			l Seme	ester					
EL3901	Advanc	ed Power Electronic	S	L= 3	T = 0	P = 0	Credits = 3		
Evaluation Sch	eme	MSEs *	TA**	ESE		Total	ESE Duration		
	ome	30	30	60		100	3 Hrs		
/ISEs* = Thre Continuous A			II be conducted an	d marks of be	tter 2 of the	ese 3 MSEs w	vill be considered f		
Course Objec	tives			Course Out	comes				
		e knowledge of recer s in the PE field.	nt and advanced	 Apply knowledge of the power semiconductor devices, to select them for a range of applications. Demonstrate and analyze techniques to design 					
un		e students having a g of the design and		and assess the performance of thyristor-based converters, as well as, switch-mode DC/DC power electronic converters, resonant and DC/AC inverters.					
					 Assess power quality specially, power factor and harmonic issues of various power electronic converters/inverters. 				
				 Analyze different modulation techniques for bridge as well as multilevel inverters. 					
				5.	converter/inverter circuitsin the laboratory.(Lab				
					component)				

UNIT-1: Semiconductor Power Devices

Conventional semiconductor power devices:-Thyristor, Gate Turn Off thyristor(GTO),Metal Oxide Field Effect Transitor(MOSFET),Insulted Gate Bipolar Transistor(IGBT). Advanced semiconductor devices: MOS Turn Of Thyristor(MTO), Emitter Turn of Thyristor(ETO), Integrated Gate Commuted Thyristor(IGCT), MOS Controlled Thyristor(MCT), Static Induction Thyristor(SITH) - symbol, structure and equivalent circuit- comparison of their features. Significance of wide band gap materials (especially SiC and GaN).

UNIT-2: AC/DC Controlled Rectifier

Single phase half controlled and full controlled converters continuous and discontinuous mode, Three phase controlled rectifier continuous mode, Single phase series converter, single and three phase dual converters, Effect of source inductance, Evaluation of input power factor and harmonic factor.

UNIT-3: Non isolated DC/DC Converters

Principle of operation and analysis of buck, boost, buck-boost, Cuk and Single Ended Primary Inductance Converter (SEPIC) regulators in discontinuous and Continuous (DCM/CCM) mode, Input and output filter design.

UNIT-4: Isolated DC/DC converters

Introduction, transformer models, principle of operation and analysis of Flyback, Forward, double ended (Two Switch) forward, Push-Pull, half- bridge and full Bridge converters. Continuous and discontinuous mode operation and design consideration.

UNIT-5 : Multilevel Inverters

Single phase half and full bridge Voltage source Inverter(VSI),Three Phase Inverter, Evaluation of performance parameters. Multilevel inverter topologies- Neutral Point clamped (NPC), Flying capacitor (FC), Symmetrical and asymmetrical Cascaded Inverters etc., Other advanced inverters such as Multi-pulse, matrix inverter, Modulation techniques: Pulse Width Modulation (PWM), SHE, SHE PWM, Hysteresis, Space Vector modulation techniques for above inverters, Introduction to Current Source Inverter (CSI)

UNIT-6 :Soft switching Converters

Resonant Converters- Classification of resonant converters, Basic resonant circuit concepts, Series parallel resonant converters, Zero voltage switching (ZVS) and Zero Current (ZCS) switching converters, steady state and dynamic analysis, modeling and control

Spelan	Aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

I Semester EL3901 **Advanced Power Electronics** T = 0P = 0Credits = 3 L= 3 MSEs * ESE Total ESE Duration ΤA **Evaluation Scheme** 30 10 60 100 3 Hrs

MSEs* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for **Continuous Assessment**

Text books:

1	Power Electronics Circuits Devices application	2004	M.H. Rashid	PHI third edition First Indian edition
2	Power Electronics: Converters, Application and Design	1996	Ned Mohan, Undeland and Robbin	John Wiley & Sons Third edition

Reference books:

1	Pulse width modulated DC-DC power converters	1993	Marian K Kazimierczuk	John Willey & Sons
2	High power converter and ac drives	2006	Bin Wu	Wiley-IEEE Press
3	Power electronics-principles and applications	1995	Joseph Vithayathil	McGraw hill Inc, New York
4	EEE/IET publications		Various authors	On Internet site www.ieeexplore.ieee.org

Spelan	- Alex	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

I Semester							
EL3902	Lab : Advance	Advanced Power Electronics			T = 0	P = 4	Credits = 2
Evaluation Scher	ne	ТА		ESE		Total	ESE Duration
		60	40		40 100		

 $\textbf{Objective:} \ \mbox{To study/ perform the practical based on syllabus Advanced power electronics Laboratory}$

The list of practical will be according to the syllabi of Advanced power Electronics

- 1. Study of SCR as a switch
- 2. Characteristic of MOSFET
- 3. Characteristic of IGBT
- 4. Study of series inverter
- 5. Study of series inverter as resonant inverter
- 6. Study of MOSFET based inverter
- 7. Study of buck-boost chopper
- 8. Simulation of SPWM
- 9. Simulation of 4-leg inverter
- 10. Study of 3-phase inverter
- 11. Study of v/f control of induction motor

Shelan	Aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. Scheme of Examination & Syllabus 2019

Integrated Power System(IPS)

I Semester						
EL3903	Analog & Digital Protec	tion	L= 3	T = 0	P = 0	Credits = 3
Evaluation Scheme	MSEs *	ТА	ESE		Total	ESE Duration
	30	30	40		100	3 Hrs

MSEs* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for **Continuous Assessment**

Course Objectives	Course Outcomes
To study analog protection and digital protection.	 Explain & design protection scheme for Relay
	Coordination
	 Develop, Compare & amp; Solve the problems of over current and distance protection
	3) Explain and define the basics terms of Digital Protection
	4) Compare and solve the different methods and techniques
	of digital protection
	5) Explain and justify the recent advances in digital protection

UNIT-1:EHV line Protection

Relay coordination using over current relay, Drawback of over current relay, Distance protection of three phase lines, carrier aided schemes. Stability of protection on power swing.

UNIT-2: Transformer & Machine Protection

Various fault occurring on transformers, alternators & large motors & complete protection against these fault.

UNIT-3: Basic elements of Digital Protection

Evolution of digital relays from electromechanical relays, Performance & operational characteristics of digital protection, Basic elements of digital protection, Signal conditioning, transducers, surge protection, analog filtering, analog multiplexer.

Conversion system- Sampling theorem, signal aliasing error, sample & hold circuit, multiplexer, analog to digital conversion, digital relay as a unit .

Digital filtering system- Low pass, High pass, FIR &IIR Filters.

UNIT-4 : Algorithms-I

Sinusoidal wave based algorithm, first & second derivative method, two sample & three sample technique.

UNIT-5: Algorithms-II

Fourier analysis & Fourier transform based algorithm.

Walsh function based algorithm, Differential equation based technique.

UNIT-6: Algorithm-III

Incident & reflected wave, coefficient of reflection, superimposed quantities & their properties & polarity versus fault location, reverse & forward faults, elliptical trajectory, Bergerons equation, discriminant function for single phase lines.Recent advances-Synchrophasors & Wavelet analysis.

Tex	kt books:				
1 Sys	Fundamentals of Power stemProtection	2005	Y.G.Paithankar&S.R.Bhide	Prentice Hall of India	
2	Digital Protection for power system		A.T.Johns&S.K.Salman Peter Peregrinus		
Re	ference books:				
1	Power System Protection	Ungradetal	Marcel Dekker Pub		
2	Transmission Network Protection	Y.G.Paithankar	ar Marcel Dekker Pub		
3	Power System Protection (Static Relays)	T.S. MadhavaRao	Tata McGraw-Hill,		
4	English Electric Relay Application Guide				
5	IEEE/IEE Publications				

Station	- Aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

I Semester

EL3904	Lab : Analog & Digital Protection			L= 3	T = 0	P = 4	Credits = 2
TA TA		ESE		Total	ESE Duration		
Evaluation Scheme		60		40		100	

Objective: To study/ perform the practicals based on syllabus

- To plot the characteristic of IDMT relay ICM 21N. 1.
- To plot the characteristic of directional relay with calculation of maximum torque angle. 2.
- To plot the characteristic of reactance relay. 3.
- To plot the characteristic of impedance relay. 4.
- 5.
- To plot the characteristic of fuse wire. To study the differential protection of single phase transformer. 6.
- To study mho relay & offset mho relay. 7.
- To study the undercurrent & overcurrent relay. 8.
- To study the harmonic restraint effect on differential relay. 9.
- 10. To plot the characteristic of earth fault relay.
- 11. To study undervoltage relay.
- To study air circuit breaker.
 To study MICOM P430 distance protection relay.
- 14. Study of relay co-ordiantion using SKM Power tools software.

Practicals based on MATLAB:-

- 15. To calculate peak value by full cycle window (Fourier Analysis)
- 16. To calculate peak value by half cycle window(Fourier Analysis)
- 17. Analytical Analysis by two sample method
- 18. Analytical Analysis by three sample method
- 19. Analytical Analysis by sample and derivative method
- 20. Analytical Analysis of first and second derivative method
- To calculate peak values by Walsh coefficient
 To calulate walsh function

Shelan	- Alex	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

I Semester							
EL3905	Digital	Control System		L= 3	T = () P = 0	Credits = 3
Evaluation Scher	Evaluation Scheme MSEs * TA ESE		Total	ESE Duration			
Evaluation Scheme		30	30	40		100	3 Hrs

MSEs* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for **Continuous Assessment**

Course Objectives	Course Outcomes
To understand the advance concepts in control system.	 Recall and explain the basics of discrete time signals. Apply and solve Ztransforms method for discrete systems and analyse the stability of digital control
	system. 3. Understand the preliminary concept of state variable
	analysis of discrete time control systems,pole placement and design through state feedback.
	 Select the PID parameters through tuning and make use of optimal control for design.

UNIT-1:Introduction

Revive of state variable analysis, types of sampling operations, Sample and Hold operations, Sampling theorem, Basic discrete time signals, Discretisation of continuous time system.

<u>UNIT-2</u>: Analysis of Digital Control Systems and Stability Methods Z-Transforms, Properties of Z-Transform, Inverse Z-Transforms, Pulse Transfer Function, Difference equations, Z-Transform method for solving the difference equations, Block diagram and signal flow graph analysis, Time response of digital control systems. Mapping between s-plane and z-plane, stability methods: Modified Routh's Criterion, Jury's method, Lyapunov stability analysis.

UNIT-3: Models of Control Systems

Problem of pole placement, effect of addition of poles & zeros to open loop transfer function, design of Digital compensator using root locus plots.

UNIT-4: State Variable analysis of Digital Control Systems

State variable description of digital control systems, conversion of state variable models to transfer function and vice versa, solution of state difference equations, controllability and observability, design of state feedback and state estimation.

UNIT-5:PID control

Conventional tuning methods such as Ziegler Nichols methods, Refined zeigler Nichols method etc., Introduction to optimization methods for tuning of PID controller; Particle swarm optimization (PSO), Genetic Algorithms (GA) etc.

<u>UNIT-6:</u>Optimal and Robust control system design

Review of optimal control, Linear Quadratic Regulators (LQR), LQR tracking problem, H2-optimal control, H∞-optimal control, Introduction to multivariable robust controls.

Text books

Digital Control and State Variable Methods	M. Gopal	Tata Mc-Graw-Hill
Discrete Time Control Systems	K.Ogata	Pearson Education, (Singapore) (Thomson Press India).
Digital Control Systems	B.C Kuo	Prentice Hall
Optimal control: Linear Quadratic Methods	B.D.O. Anderson	Dover publications
Robust control design & optimal controlApproach	Senglin	John Wiley & sons

Reference books:

1	Control System Engg	I.J. Nagrath&M.Gopal	John Wiley & sons
2	Control System Analysis and Design	K.K. Aggarwal	Khanna Publishers
3	Optimal Control	BDO Andersom, Moore	Dover Publications

Shelan	- Alex	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. Scheme of Examination & Syllabus 2019

Integrated Power System(IPS)

I Semester								
EL3906	HVDC	Power Transmission		L= 3	Τ=	D P = 0		Credits = 3
Evaluation Sche	me	MSEs *	ТА	ESE		Total		ESE Duration
		30	30	40		100		3 Hrs

MSEs* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for **Continuous Assessment**

Course Objectives	Course Outcomes
To learn the principles of conventional High Voltage Direct Current Transmission and modern trends in it.Multiterminal HVDC systems are also studied. Also voltage source converter technology is introduced.	Recall the principles, advantages and applications of a HVDC link. Explain the operation of converters in a classical HVDC link and modern VSCHVDC technology. Model valve and converter for simulation. List various methods of control and protection, various faults, stability aspects relevant to HVDC system.

UNIT-1:Introduction to HVDC

Development of HVDC technology comparison between HVAC and HVDC, Applications of HVDC transmission, Type of DC transmission, Selection of converter configuration.

UNIT-2:Rectifier and inverter

Rectifier and inverter operation of Line commutated converters, Analysis of rectifier with two-valve condition, Analysis of rectifier with two- three valve conduction, Analysis of inverter with two valve conduction, Analysis of inverter with two-three valve conduction. Introduction to HVDC with Voltage Source Converters(VSC)

UNIT-3: Digital simulation

Digital simulation of converters, Generalized equation for simulation of converters, Derivation of converter equations with Two valve conduction, Three valve conduction.

UNIT-4: Control of HVDC converters and system

Requirements of control system for HVDC converter, Rectifier compounding, Inverter compounding, Converter control characteristics, Converter firing schemes: Individual phase control (IPC), Equidistant pulse control (EPC), Draw backs of individual phase control, Draw backs of EPC, Higher level controls, power controllers, Characteristics & non characteristics harmonics, Different methods to overcome problem of non-characteristics Harmonics., Filters. Starting and stopping of DC links.

UNIT-5 : Multiterminal HVDC system

Fault development and protection, Inter action between AC-DC power system, Over-voltage on AC/DC side Multiterminal HVDC system, Control of MTDC system,

UNIT-6: Modeling of HVDC system

Per unit system representation for power flow solution, Representation for stability studies. Effect of HVDC Link on Stability. Faults and Protection of HVDC Systems. HVDC circuit breaker

Text books:

1	High voltage direct current transmission		J. Arrillaga	Peter Peregrinus Itd. London, U.K.
2	Direct Current Transmission (Vol.I)	1971	E. W. Kimbark	Wiley Interscience
3	HVDC power Transmission Systems	1990	K. R. Padiyar	Wiley Eastern Ltd.

Shelan	apr	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

EL3907	Power	System Modelling			L= 3	T = 0	P = 0	Credits = 3
Evaluation Schem	ne	MSEs * 30		TA** 30	ESE 40		Total 100	ESE Duration 3 Hrs
Evaluation Scheme				Course Out 1. Unde the v on ir 2. Anal refer 3. Eval syste 4. Crea	comes erstand the ge arious fluxes duced emf du yze the electri ence in per ur uate the elect em componen te mathemati	eneral co of variou uring the ical mac nit for sta rical made ts under cal mode	Instruction and us electrical ma small and trans hines in station ability analysis. chine paramete	relationship between chines and its impact sient disturbances. ary and rotary frame of rs for various power amic load conditions. y and rotating

UNIT-1: General Background

Evolution of electric power system, structure of power system, power system control, design and operating criteria for stability.

*Problems:*Basic Concepts & definition, rotor angle stability, voltage stability & Voltage collapse, mid-term & long term stability, Classification of Stability.

UNIT-2:Synchronous Machine Modeling I

Description of a Synchronous Machine: Basic equations of a synchronous machine: stator circuit equations, stator self, stator mutual and stator to rotor mutual inductances, dq0 Transformation: flux linkage and voltage equations for stator and rotor in dq0 coordinates, electrical power and torque, physical interpretation of dq0 transformation.

UNIT-3 : Synchronous Machine Modeling II

Per Unit Representations: The Park's transformation, power-invariant form of Park's transformation; Equivalent Circuits for direct and quadrature axes, Steady state Analysis: Voltage, current and flux-linkage relationships, Phasor representation, Rotor angle, Steady-state equivalent circuit, Computation of steady-state values.

<u>UNIT-4 : Excitation and prime-mover controllers</u>

Excitation system, excitation system modeling, excitation system –standard block diagram, system representation by state equations, prime mover control system, examples.

UNIT-5 : Transformer modeling & the per unit system

Introduction, single phase transformer model, three phase transformer connection, per phase analysis, p.u. normalization, p.u. three phase quantities, p.u. analysis of normal system, regulating transformer for voltage & phase angle control.

UNIT-6:Load modeling

Basic load-modeling concept, static load models, dynamic load model, modeling of I.M., acquisition of load model parameters.

Transmission line Modeling

Introduction, derivation of terminal V,I relations, waves on transmission lines, transmission matrix, lumped circuit equivalent, simplified models, complex power transmission (short line, medium & long line, Radial line).

Text books:

1	Power System Stability and Control	1993	P. Kundur	McGraw-Hill
2	Dynamic Models for Steam and Hydro Turbines in Power System Studies			IEEE Committee Report
3	Power System Control and Stability	1978	P.M Anderson and A.A Fouad	Iowa State University Press, Ames, Iowa

Stelan	- Alex	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

EL3908	EL3908 PE I: Electrical Drives and Controls			L= 3	T = 0	P = 0	Credits = 3		
Evaluation Scher	me	MSEs *	ТА	ESE		Total	ESE Duration		
Evaluation conci	no	30	30	40		100	3 Hrs		
MSEs* = Three MSE	s of 15 Ma	irks each will be conducte	ed and marks of better 2	2 of these 3 MSEs	will be consid	dered for Contir	nuous Assessment		
Course Objectiv	/es			Course Outcomes					
	To understand the mathematical modeling of				 Explain the working of DC motor, Induction motor, synchronous motor, brushless DC motor and Switched 				
	drives and the latest technology. Stress is given on Vector control, space vector modulation control of				reluctance motors				
induction control a	induction motor and synchronous motor. Adaptive control and introduction to fuzzy and neural control of drives is introduced.				 Analyse operation of DC motor, Induction motor, synchronous motor, brushless DC motor and Switched reluctance motors. 				
			 Choose suitable converters for DC motor, Induction motor, synchronous motor, brushless DC motor and Switched reluctance motors. 						
				4. So		als on DC moto	or, Induction motor,		

UNIT-1: Analysis of DC Motor:

State variable representation of seperately excited DC motor and DC shunt motor, Converters for DC drives, Average value analysis of DC drive. Machine control with voltage controlled converter, Machine control with current controlled converter.

UNIT-2:- Analysis of Induction Motor:

Reference frame theory, Balanced Set, Transformation of resistance and flux linkages, Theory of symmetrical Induction motor, voltage and torque equations in machine variables and their transformation to arbitrary reference frame, state vector representation of the equations, free acceleration characteristics,

UNIT-3: Induction motor control systems

Voltage Source Inverter Drive with PWM, Current Source Inverter Drive, Forced commutated inverter drive control of Induction motor, Flux Vector control of Induction motors, Direct torque control.

UNIT-4:Synchronous motors Drives:

Synchronous machines equations in different reference frames,

Synchronous motor drives with sinusoidal waveforms, True Synchronous mode and Self controlled mode Load commutated inverter drives Synchronous motor drive with trapezoidal waveforms(Brushless DC motor).,Vector Control of Synchronous motors, Switched reluctance motor and its control.

UNIT-5 : Space vectors:

Stator space current, stator voltage space vector, stator flux linkage space vector, transformation of space vector coordinates from one reference frame to another. Space vector Modulation ,Control of Induction motor by Space vector Modulation.

UNIT-6:Digital Control of Drives

Adaptive control principles, Gainscheduling, Self tuning control, Model referencing adaptive control, Sliding Mode control, Idea of Fuzzy and Neural Control.

Necessity and Application of Digital signal processors to control of AC/DC Drives.BasicArchitectoure of Texas Instruments TMS320LF2407 processor,Programming methods

Idea of Field Programmable Gate Arrays(FPGA) Technology.

Text books:

107				
1	Analysis of Electric Machinery		Paul, C. Krause	McGraw Hill
2	Modern Power Electronics and AC Drives		B.K. Bose	Prentice Hall
3	Texas Instruments TMS320LF2407 processor Manual			
4	Variable frequency AC motor Drive system		David Finney	IEE Press
5	Control of Electrical Drives	1996	W. Leonhard	Springer Verlag
6	Electric Drive		VedamSubramanyam	Tata McGraw Hill

L

Stelan	Aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

EL3908	PE I: El	I: Electrical Drives and Controls			T = 0	P = 0	Credits = 3
Evaluation Scheme		MSEs *	ТА	ESE		Total	ESE Duration
Evaluation Schen	lie	30	30	40		100	3 Hrs

Reference books:

1	High-Power Converters and AC Drives	2006	Bin Wu	Wiley & IEEE Press
2	Power Electronics, Converters, Applications and Design	3 rd Edition	Ned Mohan, T. M. Undeland W. P. Robbins	Media Enhanced
3	'Power Semiconductor Controlled Drives	1989	G.K. Dubey	Prentice Hall, N. Jersey
4	Electric Drives	2002	Krishnan	Prentice Hall of India

Stelan	Set .	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

	I Semester									
EL3909	Lab : PE I: Lab	: Electrical Drives and Cor	ntrols	L= 3	T = 0	P = 4	Credits = 2			
Evaluation Sche	me	ТА	ESE			Total	ESE Duration			
		40	60			100				

Objective: To study/ perform the practicals based on syllabus

List of Practicals

- 1. Study of program written in C to generate Pulse width modulated pulses with DSP
- 2. Closed Loop Speed control of separately excited D.C. motor
- 3. Closed Loop Speed control of Brushless DC motor
- 4. Closed Loop Speed control of Induction motor
- 5. Vector control of Induction motor
- 6. Control of Switched Reluctance motor with DSP program
- 7. To study the Simulation of DC Drive in MATLAB
- 8. To study the Simulation of Vector Control in MATLAB

Shelan	Aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

	I Semester										
EL3910	EL3910 PE I: Renewable Energy System			L= 3 T = 0		P = 0	Credits = 3				
		MSEs *	ТА	ESE		Total	ESE Duration				
Evaluation Scher		30	30 ed and marks of better 2	40		100	3 Hrs				
	/ the majo g solar, w	or renewable energy vind, Biomass for diff	/ sources ferent	solar, wind an Demonstrate a the performan converters Assess the ou different envir Analyze the pe	dge of rene d other sys and analyze ce of solar utput of re onmental c erformance	tems techniques PV panels a newable en- conditions of differentro	y sources to various to design and assess nd solar based energy ergy systems under enewable energy nd hybrid sources				

UNIT-1:Introduction to Energy Sources

World Energy Futures, Conventional Energy Sources, Renewable Energy Sources, Prospects of Renewable Energy Sources. Environmental aspects of Electrical Energy Generation.

UNIT-2:Solar Energy -

a) Introduction to Solar Radiation and its measurement, Introduction to Solar Energy Collectors and Storage. b) Applications of Solar Energy: Solar Thermal Electric Conversion, Thermal Electric Conversion Systems, Solar Electric power Generation Solar Photo- Voltaics, Solar Cell Principle, Semiconductor Junctions, Conversion efficiency and power output, Basic Photo Voltaic System for Power Generation. Solar photovoltaic modules, maximum power point tracking and algorithms

UNIT-3: Wind Energy:

a) Introduction to wind energy Conversion, the nature of the wind, Power in the wind.

b) Wind Energy Conversion: Wind data and energy estimation, Site Selection Considerations, Basic Components of a Wind Energy Conversion System, Classification of WEC Systems, Schemes for Electric Generation using Synchronous Generator and Induction Generator, Wind energy Storage.

UNIT-4:Direct Energy Conversion Processes (Overview) :

a) Information on Magneto Hydro Dynamic Power Generation:

b) Thermo-Electric Generation: Basic principles of thermo-electric powergeneration, Seebeck, Peltier, Thomson effects, Thermo-Electric power generator, Analysis, materials.

d) Thermionic Generation: Thermionic emission and work function, Basic thermionic generation.
 d) Fuel Cells H2O2Cell, Classification of fuel Cells, Types, Advantages, Electrodes, Polarization.

e) Thermo Nuclear Fusion Energy: The basic Nuclear Function and Reactions Plasma Confinement, Thermo Nuclear function Reactions.

UNIT-5 : Energy from Biomass:

a) Introduction: Biomass conversion technologies, photosynthesis, Bio-gas generation, types of bio-gas plants.

b) Biomass as a Source of Energy: Method for obtaining energy from Bio-mass, Biological Conversion of Solar Energy.

UNIT-6: Applications of Renewable energy

Wind Farms: Grid interfacing of wind farm, methods of grid connection, grid system and properties. Small hydro power, Hybrid systems: Wind- solar, wind photovoltaic etc

Taxt books

102				
1	Non-Conventional Sources of Energy	4th Edition, 2010	G.D. Rai	Khanna Publishers
2	Non Conventional Energy Sources	2nd Edition. 2009	B. H. Khan	The McGraw Companies Hill
3	Renewable energy sources and conversion technology	1990	N.K. Bansal, M. Kleemann, M. Heliss	Tata McGraw Hill

L

Stelan.	All	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

I Semester

EL3910	10 PE I: Renewable Energy System			L= 3	T = 0	P = 0	Credits = 3
Evaluation Scher	me	MSEs *	ТА	ESE		Total	ESE Duration
		30	30	40		100	3 Hrs

Reference books:

1	Direct Energy Conversion		R. A. Coombie	Pitman
2	Renewable energy sources and emerging technologies	1st Edition, 2008	D. P. Kothari	PHI
3	Related IEEE/IEE Publications			

Shelan	aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

I Semester

EL3911	Lab : PE I: Lab	I: Lab: Electrical Drives and Controls		L= 3	T = 0	P = 4	Credits = 2
Evaluation Scher	me	ТА		ESE		Total	ESE Duration
		40		60		100	

Objective: To study/ perform the practicals based on syllabus

List of Practicals

- 1. Study of Solar PV Emulator using Texas kit.
- 2. To determine the PV and PV characteristics of solar panel.
- 3. To determine the effect of series connected solar cells on PV characteristics.
- 4. To determine the effect of parallel connected solar cells on IV characteristics.
- 5. MATLAB based simulation of solar cell characteristics.
- 6. MATLAB based simulation of grid connected solar cells using current control.
- 7. Solar Wind hybrid system changing system.
- 8. Visit to biomass plant and Sanjeevani biogas plant as case study.

Stelan	Ale 1	June 2020	1.01	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2021-22 Onwards

Integrated Power System(IPS)

II Semester EL3915 **Power System Planning** L= 3 T = 0P = 0Credits = 3MSEs * ΤA ESE Total ESE Duration **Evaluation Scheme** 30 30 40 100 3 Hrs Es* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be con sidered for Continuous

Course objectives Course Outcomes Illustrate various regulations by state and central 1) To understand the load forecasting for the planning of government for energy generation and supply and power generation. To do the generation planning apply them for planning integrated power system. considering reliability, environmental aspects. 2) Develop and examine the role of investors in a power Students also understand how to design the optimal plant portfolio for sustainable development power availability . Interpret the load forecasting and recommend the 3) generation, transmission, and distribution capacities for integrated power system considering economical, reliable and optimal usage for sustainable development. Predict the behavior of integrated power system for 4) secure and reliable operation.

UNIT-1: Introduction

Introduction of power planning, National and Regional Planning, structure of P.S., planning tools, Electricity Regulation

UNIT-2: Load Forecasting & Generation Planning

Electrical Forecasting, forecasting techniques modeling. Generation planning, Integrated power generation cogeneration/captive power, Power pooling and power trading.

UNIT-3 : Transmission planning and Power System Economics

Transmission and distribution planning, Power system Economics, Power sector finance, financial planning, private participation Rural Electrification investment, concept of Rational tariffs.

UNIT-4: Reliability

Power supply Reliablity, Reliability planning, Reliability evaluation, Functional zones, Generation reliability, Generation & Transmission reliability, Quality of Supply.

UNIT-5 : System Operation & Environmental Aspects in Planning

System operation planning, load management, load prediction, reactive power balance, online power flow studies, state estimation, computerized management, power system simulator.

Computer aided planning, wheeling, Environmental effects, Greenhouse effect, Technological impacts, Insulation coordination, Reactive compensation.

UNIT-6:Power System Security :

Operation in Power System Security :- Introduction, Factors affecting power system security, Contingency analysis, ac power flow security analysis, concentric relaxation, bounding area method.

State Estimation :- Introduction, Method of least squares, Maximum likelihood weighted least square estimation, State estimation by orthogonal decomposition, Detection and identification of bad measurements, network observability and pseudo-measurements.

Shelan	Aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

II Semester							
EL3915	EL3915 Power System Planning L= 3 T = 0 P = 0 Credits = 3						
Evaluation Scheme MSEs * TA				ESE		Total	ESE Duration
Evaluation Scher	iie	30	30	40		100	3 Hrs

Text books:

Te	kt books:			
1	Electrical Power System Planning		A.S.Pabla	Macmillan India Ltd.
2	Power Generation, Operation & Control	2011	Allen J. Wood, B.F. Wollenberg	Wiley India, Reprint
3	Modern Power System Analysis	4th Edition	D.P. Kothari, I.J. Nagrath	Tata Mcgraw Hill Education Pvt. Ltd.
4	Electrical Power Systems – Analysis, Security and Deregulation	Third Printin g	P.Venkatesh, B. V. Manikandan, S. Charles Raja, A. Srinivasan	PHI Learning Pvt. Ltd.

Stalan	der	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

II Semester EL3916 Applications of Power Electronics to Power System T = 0P = 0Credits = 3L=3MSEs * TA ESE Total ESE Duration **Evaluation Scheme** 40 100 30 30 3 Hrs ISEs* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment **Course Objectives** Course outcomes 1. Demonstrate the knowledge of AC transmission 1. To enable students to understand the problems faced by constraints and decide the power electronics-based modern power utilities and how power electronic solutions solutions. can overcome these problems. 2. Design and assess the performance of shunt and series thyristor-based controllers. Interpret and compare the performance of various 2. To provide understanding and enable students to design

To provide understanding and enable students to design power electronics-based controllers that can control active
 Interpret and compare the performance of various converter - based controllers
 Analyse different control techniques for shunt/series/shunt-series and series-series controllers.

Unit 1: Introduction to FACTS Controllers

and reactive power flow.

Power flow in AC system, Transmission problems and needs. Overview of stability. The emergence of FACTS controllers and possible benefits of them.

Unit 2: Static VAR Compensators (SVC)

Objectives of shunt compensation. Functional description and structures of Thyristor Controller Reactor (TCR), Thyristor Switched Capacitor (TSC), FC–TCR, Mechanically Switched Capacitor – TCR, TSC–TCR.Concepts of voltage control and applications

Unit 3: Thyristor & GTO Based Series Compensators

Concept and objectives of series compensation. Operation, characteristics and controls of variable impedance type series compensators such as Thyristor-Switched Series Capacitor (TSSC), Thyristor-Controlled Series Capacitor (TCSC), & GTO Controlled Series Capacitor (GCSC).

Unit 4: Switching Converter type Shunt & Series Compensator

Structure, operation, & characteristics of Static Synchronous Compensator (STATCOM) and Static Synchronous Series Compensator (SSSC). Control schemes and applications. Comparative benefits over SVC and other series controllers.

Unit 5: Static Voltage & Phase Angle Regulator

Purpose of voltage and phase angle compensation. Operation and structures of Thyristor Controlled Voltage and Phase Regulator TCVR & TCPAR. Fundamentals of converter-based voltage and angle regulators

Unit 6: Combined FACTS compensators and other special purpose FACTS Controllers

Objectives, need, and principle of operation of Unified Power flow Controller (UPFC), Interline power flow controller (IPFC). Comparative evaluation of UPFC with different controllers such as TSSC.TCSC, TCPAR & SSSC. NGHSSR damper. Thyristor Controlled Braking Resistor (TCBR).

Tex	kt books:			
1	Thyristor – Based Facts Controllers for Electrical Transmission Systems	2002	R.MohanMathur, Rajiv K.Varma	IEEE press and John Wiley & Sons, Inc
2	Understanding FACTS -Concepts and Technology of Flexible AC Transmission Systems	1999	Narain G. Hingorani	Standard Publishers Distributors, Delhi
3	FACTS Controllers in Power Transmission and Distribution	2007	K.R.Padiyar	New Age International(P) Limited, Publishers, New Delhi

Stelan	- Aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

II Semester

EL3916 Applications of Power Electronics to Power System					L= 3	T = 0	P = 0	Credits = 3
Evaluation Scheme	۵	MSEs *	ТА		ESE	г	otal	ESE Duration
E valuation concine	0	30	30		40		100	3 Hrs

Reference books:

1	Flexible A.C. Transmission Systems	1999	A.T.John	Institution of Electrical and Electronic Engineers (IE1999EE)
2	HVDC and FACTS controllers – Applications of Static Converters in Power System	April 2004	V.K.Sood	Kluwer Academic Publishers

Shelau	Aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

M. Tech. Scheme of Examination & Syllabus 2019

Integrated Power System(IPS)

II Semester								
EL3917	EL3917 Power Quality				L= 3	T = 0	P = 0	Credits = 3
		MSEs *	ТА		ESE	Т	otal	ESE Duration
Evaluation Scheme		30	30		40	100		3 Hrs

Course objectives	Course Outcomes
To understand the different power quality problems, its causes, effects and various mitigating custom power devices. Further the subject is concentrated to analyse the different control strategies and algorithm.	 Define, discuss and analyse the various power quality problem, their causes and effects in distribution system Identify, discuss and analyse the different non-linear loads. Define, explain, apply various measurements and transforms to analyse the power quality problems. Describe, analyse and calculate the powers, harmonics indices and sequence components. Explain, apply the various indices and develop load balancing algorithms. Discuss, analyse, apply the various custom power devices, their reference generation algorithms and their applications.

UNIT-1:Introduction

Introduction – Characterisation of Electric Power Quality: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation, Power acceptability curves – power quality problems: poor load power factor, Non linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards.

UNIT-2:Non Linear Loads

Single phase / Three phase static converters, Battery chargers, Arc furnaces, Fluorescent lighting, pulse modulated devices, Adjustable speed drives.

UNIT-3: Measurement and Analysis Method

Voltage, Current, Power and Energy measurements, power factor measurements and definitions, event recorders, Measurement Error – Analysis: Analysis in the periodic steady state, Time domain methods, Frequency domain methods: Laplace's, Fourier and Hartley transform – The Walsh Transform – Wavelet Transform.

UNIT-4: Analysis and Conventional Mitigation Methods

Analysis of power outages, Analysis of unbalance: Symmetrical components of phasor quantities, Instantaneous symmetrical components, Instantaneous real and reactive powers, Analysis of distortion: On–line extraction of fundamental sequence components from measured samples – Harmonic indices.

UNIT-5 : Voltage Sag

Analysis of voltage sag: Detorit Edison sag score, Voltage sag energy, Voltage Sag Lost Energy Index (VSLEI)- Analysis of voltage flicker, Reduced duration and customer impact of outages, Classical load balancing problem: Open loop balancing, Closed loop balancing, current balancing, Harmonic reduction, Voltage sag reduction.

UNIT-6: Power Quality Improvement

Utility-Customer interface –Harmonic filters: passive,–Custom power devices: Network reconfiguring Devices, Load compensation using DSTATCOM, Voltage regulation using DSTATCOM, protecting sensitive loads using DVR, UPQC – control strategies: P-Q theory, Synchronous detection method – Custom power park – Status of application of custom power devices.

Te	Text books:						
1	Power Quality Enhancement Using Custom Power Devices	2002	ArindamGhosh	Kluwer Academic Publishers			
2	Electric Power Quality	1994(2nd edition)	G.T.Heydt	Stars in a Circle Publications			
3	Power Quality		R.C. Duggan	Publisher			

Sheltan	-	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

2

3

Power electronic converter harmonics

Title of the book

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M. Tech. Scheme of Examination & Syllabus 2019

Integrated Power System(IPS)

II Semester

	EL3917	Power 0	Power Quality				T = 0	P = 0	Credits = 3
			1						1
Eva	Evaluation Scheme		MSEs *	ТА		ESE	1	otal	ESE Duration
			30	30		40		100	3 Hrs
Re	eference bool	ks:							
1	Power system harmonics					A.J. Arrillga			

Derek A. Paice

Author(s)

	State	der	June 2020	1.01	Applicable for AY 2021-22 Onwards
Cł	hairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

II Semester EL3918 PE II: Advanced Digital Signal Processing P = 0Credits = 3I = 3T = 0MSEs * TA** ESE Total ESE Duration **Evaluation Scheme** 30 30 40 100 3 Hrs

MSEs* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment

UNIT-1:Introduction

Mathematical description of change of sampling rate – Interpolation and Decimation, Filter implementation for sampling rate conversion – direct form FIR structures, DTFT, FFT, Wavelet transform and filter bank implementation of wavelet expansion of signals

UNIT-2: Estimation Techniques

Discrete Random Processes – Ensemble averages, Stationary processes, Autocorrelation and Auto covariance matrices, Parseval's Theorem, Wiener-Khintchine Relation – Power Spectral Density, AR, MA, ARMA model based spectral estimation, Parameter Estimation,

UNIT-3: Prediction Techniques

Linear prediction – Forward and backward predictions, Least mean squared error criterion – Wiener filter for filtering and prediction, Discrete Kalman filter.

UNIT-4: Digital Signal Processor

Basic Architecture – Computational building blocks, MAC, Bus Architecture and memory, Data Addressing, Parallelism and pipelining, Parallel I/O interface, Memory Interface, Interrupt, DMA.

UNIT-5 : APPLICATION OF DSP

Design of Decimation and Interpolation Filter, FFT Algorithm, PID Controller, Application for Serial Interfacing, DSP based Power Meter, Position control.

UNIT-6:VLSI IMPLEMENTATION

Basics on DSP sytem architecture design using VHDL programming, Mapping of DSP algorithm onto hardware, Realisation of MAC & Filter structure.

Tex	kt books:			
1	Adaptive Signal Processing	Third edition, 2004	Bernard Widrow, Samuel D. Stearns	Pearson Education
2	Statistical & Adaptive signal processing, spectral estimation, signal modeling, Adaptive filtering & Array processing	2000	Author(s)	McGraw-Hill International
3	Statistical Digital Signal Processing and Modelling	Edition (Year of publication)	Monson H. Hayes	John Wiley and Sons, Inc

Re	ference books:			
1	Digital Signal Processing	2002	John G.Manolakis Proaks, Dimitris G.	Pearson Education
2	Digital Signal Processing		S. Salivahanan, A. Vallavaraj and C. Gnanapriya	ТМН
3	Digital Signal Processing- Implementation using DSP Microprocessors with Examples from TMS320C54xx	2004	Avatar Sing, S. Srinivasan	Thomson India
4	DSP Integrated Circuits	1999	Lars Wanhammer	Academic press, New York
5	Digital Signal Processing: A Modern Introduction	2007	Ashok Ambardar	Thomson India2007. edition,

Shelan	Aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

II Semester EL3919 **PE II: EHV Power Transmission** T = 0P = 0Credits = 3L=3MSEs * TA** ESE Total ESE Duration **Evaluation Scheme** 40 100 30 30 3 Hrs

MSEs* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment

UNIT-1:Introduction

Standard transmission voltages – different configurations of EHV and UHV lines – average values of line parameters – power handling capacity and line loss – costs of transmission lines and equipment – mechanical considerations in line performance.

UNIT-2: Calculation of Line Parameters

Calculation of resistance, inductance and capacitance for multi-conductor lines – calculation of sequence inductances and capacitances – line parameters for different modes of propagation – resistance and inductance of ground return, numerical example involving a typical 400/220kV line using line constant program.

UNIT-3: Voltage Gradients Of Conductors

Charge-potential relations for multi-conductor lines – surface voltage gradient on conductors – gradient factors and their use – distribution of voltage gradient on sub conductors of bundle - voltage gradients on conductors in the presence of ground wires on towers.

UNIT-4:Corona Effects-I :

Power losses and audible losses: I²R loss and corona loss - audible noise generation and characteristics - limits for audible noise - Day-Night equivalent noise level- radio interference.

UNIT-5 : Corona Effects - II :-

Corona pulses (their generation and properties), Frequency spectrum, Properties of pulse trains and filter response , Limits for radio interference fields , the CIGRE formula, The RI excitation function Procedure for obtaining excitation fudnction from CIGRE Formula, Design of filter, television Interference.

UNIT-6: Electrostatic Field Of EHV Lines

Effect of EHV line on heavy vehicles - calculation of electrostatic field of AC lines- effect of high field on humans, animals, and plants - measurement of electrostatic fields - electrostatic Induction in unenergised circuit of a D/C line - induced voltages in insulated ground wires - electromagnetic interference.

Tex	t books:			
1	Extra High Voltage AC Transmission Engineering	Second Edition, 1990	Rakosh Das Begamudre	New Age International Pvt. Ltd
2	Power Engineer's Handbook	6th Edition, Oct. 2002		TNEB Engineers'Association
3	Microtran Reference Manual www.microtran.com		Microtran Power System Corporation	Analysis

1 st	elan.	Apr -	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chair	person	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

II Semester

EL3920	.3920 PE II: Restructuring of Power System			L= 3	T = 0	P = 0	Credits = 3
Evaluation Schem	ne	MSEs *	TA**	ESE		Total	ESE Duration
		30	30	40		100	3 Hrs
ISEs* - Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment							

 Course Objective
 Course Outcome

 1)
 Discuss deregulation of electricity market.

 2)
 Classify, illustrate different processes and operations in deregulation.

 3)
 Explain, apply solution techniques for optimal power flow.

 4)
 Discuss automation in energy management and communication technologies in power system.

UNIT-1: Deregulation of Electricity Market

Introduction to Power System Deregulation, Reform Motivations, Traditional Model, Separation of Ownership, Competition and Direct Access in the Electricity Market, Role of ISO, Retail Market, International Experiences

UNIT-2: Electricity Market Characteristics

Direct Access and Power Wheeling, Pool & Bilateral trading, Bidding and Auction Mechanisms, Market Timing, Sequential and Simultaneous Markets, Scheduling, Gaming, Congestion Management

UNIT-3: Transmission Open Access

Transmission Open Access, Transmission Pricing, Impact of Congestion and Management, ATC and Factors affecting ATC, Determination of ATC, Ancillary Services and their management, Electricity Bill 2003 and its impact.

UNIT-4 Optimal Power Flow

OPF and its Formulation, Constraints, Different solution Techniques, Non Linear Programming (NLP) and Genetic Algorithm.

UNIT-5: SCADA and Distribution Automation

SCADA & Distribution Automation, Energy management system

UNIT-6: Power System Communication

Analog and Digital Communication, communication architecture, Power system communication, PLCC, Optical Fibre etc

Tex	t books:			
1	Power System restructuring andderegulation	2001	Loi Lei Lai	John Wiley and Sons, UK.
2	Operation of Restructured Power Systems	2001	K. Bhattacharya, MHT Bollen and J.C Doolder	Kluwer Academic Publishers, USA
3	Power System Operation and Control		A.J Wood and B.F Wollenberg	John Wiley and Sons

Reference books:						
1 Computational Methods for large Sparse Power System Analysis: An Object Oriented Approach	Edition (Year of publication)	S.A Soman, S.A Khafasok, ShubhaPandit	Kluwer Academic Publishers			

Stellan	Apr	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

II Semester

EL3930	PE-II: Wide Area Monitoring and Control			L = 3	T = 0	P = 0	Credit = 3
Evaluation	MSE	TA	ESE	Total		ESE Duration	
Scheme	30	30	40	100		3	Hours

	Course Objectives:	Course Outcomes:
1.	To create awareness about real time control of power system using Load Dispatch Center and SCADA.	At the end of the course, student will be able to, 1. Demonstrate the real time operation of power system in Load Dispatch center using SCADA
2.	To provide knowledge of PMU and Synchrophasors.	 Explain and design wide area measurement systems and Apply PMU in real time control of
3.	To understand state estimation in power system.	power system 3. Develop the understanding of State Estimation and Observability

Unit 1: Load Dispatch Centre (LDC)

Functions & Responsibilities of NLDC, SLDC and RLDC, Equipments and Softwares in LDC and its operation

Unit 2: Supervisory Control and Data Acquisition (SCADA)

Introduction to SCADA, Layout of substation, Generating Station, Main equipments, parameters in grid operation and control, Data Acquisition and processing in SCADA, Introduction to SCADA protocols and Communication Standards

Unit 3: Phasor Measurement Units (PMU)

Introduction to Phasor measurement units (PMUS), global positioning system (GPS), Functional requirements of PMUs, phasor estimation of nominal frequency inputs

Unit 4: Phasor Measurement Architecture

Wide Area Monitoring Systems (WAMS) architecture, Sensors for PMUs, Transducer Impact on PMU Accuracy, Hardware for PMU and PMU Integration, PMU Architecture, Data Acquisition System, Synchronization Sources, Communication and Data Collector, Distributed PMU

Unit 5: State Estimation

Formulation of the SE Problem, Network Observability-SE Measurement Model, SE Classification, State estimation with phasor measurements, Linear state estimation, Dynamic estimators.

Unit 6: WAMS applications

Real-time analysis and technologies to detect, locate and characterize power system disturbances, monitoring power system oscillatory dynamics- Interpretation and visualization of wide-area PMU measurements, power system control with phasor feedback, discrete event control. Improving the performance of power system protection using wide area monitoring systems.

Stellar.	Stelan Del		1.01	Applicable for AY 2021-22 Onwards	
Chairperson	Dean (Acad. Matters)	Date of Release	Version		

II Semester

EL3930	PE-II: Wide Area Monitoring and Control			L = 3	T = 0	P = 0	Credit = 3
Evaluation	MSE	TA	ESE	Total		ESE Duration	
Scheme	30	30	40	100		3	Hours

Text books:

SN	Title	Year	Author	Publications
1	Power System Generation, Operation and Control	1996	Allen J. Wood and Bruce Woolenberg	John Wiley and Sons
2	Synchronized Phasor Measurements and Their Applications	2008	A.G. Phadke, J.S. Thorp	Springer Publications
3	Power System Analysis	1994.	John J. Grainger and William D Stevenson Jr	McGraw Hill ISE
4	Power System control – Technology	1986	TorstenCegrell	Prentice Hall International
5	Real Time Systems	1997	C.M. Krishna and Kangg. Shin	Mc Graw-Hill international
6	IEEE Transactions and Reputed journal articles			

Spelan de		June 2020	1.01	Applicable for AY 2021-22 Onwards	
Chairperson	Dean (Acad. Matters)	Date of Release	Version		

II Semester

EL3931 PE-II : Microgrid		L = 3	T = 0	P = 0	Credit = 3		
Evaluation	MSE	TA	ESE	Total		ESE	Duration
Scheme	30	30	40	100		3	Hours

Pre requisites: Distributed Energy Systems, Power Electronics and Power Systems

Course Objectives:	Course Outcomes:
 To enable the students to understand the concept of integration of Distributed Energy Sources, Microgrid architectures and controls. To explore interfacing resources via power electronics, hierarchical architectures, load generation management, and interaction with up- stream controllers including power system control. To understand specific issues and challenges in Microgrid control, methods of solving these issues, controlling and coordinating multiple Microgrids and managing Microsources. 	 At the end of the course, the students will be able to, 1. Explain the concept and operation of Microgrid. 2. Discuss the control issues, control architectures and the improved intelligent controllers for Microgrid stability. 3. Identify the protection challenges and apply the suitable protections for Multi Microgrid and its coordination 4. Describe and analyze the DC Microgrid, controls techniques and applications.

Unit 1: The Microgrids Concept

The Microgrid Concept as a Integrate Distributed Generation, Introduction to Renewable Energy Sources (PV, Wind), Diesel Generator, Battery, Loads. Classification of the Microgrids, Architecture of Microgrid, Operation and Control of Microgrids, Integration with Renewable energy sources, Microgrid Applications.

Unit 2: Microgrids Control Issues

Control Functions, Information and Communication Technology, Microgrid Control Architecture,

Unit 3: Intelligent Local Controllers

Inverter Control Issues in the Formation of Microgrids, Frequency and Voltage Droop Concepts, Innovative Local Controls. **Unit 4: Microgrid Protection**

Challenges for Microgrid Protection, Adaptive Protection for Microgrids, Effective Protection in Islanded Operation.

Unit 5: Operation of Multi-Microgrids

Text Books:

Multi-Microgrid Control and Management Architecture, Coordinated Voltage/VAR Support, Coordinated Frequency Control. **Unit 6: DC Microgrid Control Architecture**

DC Microgrid System Architecture and AC interface, DC Microgrid dynamics and modelling, controls of DC Microgrid, stability analysis, Applications.

	Title	Year	Authors	Publication
1	Microgrids: Architectures and Control	2013	Nikos Hatziargyriou	John Willey & Sons, Inc., IEEE Press.
2	Microgrid Technology and Engineering Application	2015	Li, Fusheng; Li, Ruisheng; Zhou, Fengquan	Academic Press (Imprint – Elsevier)
3	Microgrid: Advanced Control Methods and Renewable Energy System Integration	2017	Magdi S. Mahmoud	Elsevier
Refe	rence Books:			
1	Microgrid Design and Operation	2018	Bracco, Stefano; Brignone, Massimo; Delfino, Federico	Artech House
2	Microgrid Dynamics and Control	2017	Hassan Bevrani, Bruno Francois, Toshifumi Ise	John Willey & Sons, Inc., IEEE Press.
3	Related IEEE Transactions and reputed journal papers			

Shelan	Shelan Del		1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

M. Tech. Scheme of Examination & Syllabus 2019

Integrated Power System(IPS)

II Semester								
EL3921 PE III : Power System Stability			L= 3	T = 0	P = 0	Credits = 3		
Evaluation Scheme		MSEs *	TA**	ESE		Total	ESE Duration	
		30	30	40	40 100		3 Hrs	

MSEs* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment

Objectives: To understand various types of stabilities in power system, their analysis and means to overcome the instability.

UNIT-1: Introduction

Power System Operation and Control, power system stability, classification of stability, mid-term and long term stability, Impact on Power System Operation, classical representation of synchronous machine in a single machine infinite bus system (SMIB), limitations of classical model

Unit 2: Excitation and Prime Mover

Characteristics and types of excitation systems, IEEE type-I excitation system, Prime mover and energy supply systems, mathematical modeling of simple excitation system, power system stabilizers

UNIT-3: Steady state and transient characteristics of system

Phasor diagrams in terms of voltages Eq, Eq', and Vg for salient and non salient pole machines, Derivation of power expressions, saliency, Characteristics of system with generator operating at synchronous speed

UNIT4: Steady state stability

Steady state stability, characteristics, effect of damping, positive, negative resistance and turbine regulation, effect of induced currents in field winding, stability analysis with excitation

Unit 5: Transient stability

Transient stability, swing equation, equal area criterion, solution of swing equation, Numerical methods- Modified Euler's method, Runge-Kutta method, Multimachine stability, Extended equal area criterion

Unit 6: Voltage stability

Classification of voltage stability, voltage stability analysis: static and dynamic, comparison with angle stability, Voltage collapse, prevention of voltage collapse

Tex	kt books:					
1	Power System Stability and control	Prabha Kundur	Mc Graw Hill Inc			
2	Power System Stability Vol. III	Edward Kimbark	k IEEE Press, Wiley Inter science John Wiley & Sons Publication			
3	Power System Dynamics : Stability and Control	K.R. Padiyar	2 nd edition BS Publications			
4	Computational Techniques for voltage stability assessment and control	Aijarapu V	. Springer			

Re	Reference books:								
1	Power System Dynamics : Stability Control	Jan Machowski	John Wiley & Sons (2 nd Edition)						
2	Power System Analysis	Grainger, Stevenson	McGraw-Hill series in Electrical & Computer Engineering						

Stelan	Aler .	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

II Semester								
EL3922 PE III : Electrical Distribution Systems			L= 3	T = () P = 0	Credits = 3		
Evaluation Scher	Evaluation Scheme		TA**	ESE		Total	ESE Duration	
		30	30	40		100	3 Hrs	

MSEs* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment

Objectives: To understand the various aspects of distribution including type of distribution system, voltage level, equipment's used, protection etc.

<u>UNIT-1</u>:Introduction to Distribution systems, Regulations, Electricity Act 2003, Energy conservation act-2001, electricity rules-2005, electricity authority regulations, distribution code, consumer values, consumer satisfaction, measurement standards of consumer satisfaction, Model distribution system.

Explanation of basic terms like demand factor, utilization factor, load factor, plant factor, diversity factor, coincidence factor, contribution factor and loss factor-Relationship between the load factor and loss factor - Classification of loads. Load, Management Strategies : Differential tariff, load staggering, interruptible load, supplies, maintenance of essential services, integrated system operation, use of captive generation & cogeneration in distribution network, distribution system measures, conservation.

<u>UNIT-2</u>:Feeders : Radial and loop types, Engineering considerations for voltage levels and loading, causes of unbalance and unequal drops. System analysis : Voltage drop and power loss calculations, manual methods of solution of radial networks, three-phase & non-three-phase primary lines load flow and symmetrical component applications.

<u>UNIT-3</u>: Voltage control : Equipment for voltage control, effect of series capacitors, effect of AVB/AVR, line drop calculations and compensations, Reactive power requirements, economic consideration & best location.

<u>UNIT-4:</u> Distribution System Reliability : Basic defination, Appropriate levels of distribution reliability, Series & Parallel System, Markov Processes, Distribution reliability Indices, System and customer based indices, Ioad and energy based indices, usage of reliability indices.

<u>UNIT-5</u>:Introduction to Distribution Automation, Data acquisition system and decentralized control, data acquisition and protection considerations of control panel. Circuit breaker, reclosers, sectionalizers, location of sectionalizers, fuses, low voltage and current limiting fuses, expulsion fuses, fuses applications considerations, lightning protection, disconnect switches, non load break disconnect switches, break disconnect switches, relays.

Earthing System: Earth and safety, nature of an earth electrode, earth conductor sized, design of earthing electrode, electrode earth resistance, temporary earthing, system earthing, line and substation earthing, substation earthing mat, consumer installation earthing.

<u>UNIT-6</u>: Substation :-Substation layout, selection criteria, voltage and spacing load, space and location, distribution substation protection needs, distribution substation construction methods, trends in distribution substation, insulation coordination, voltage regulation, distribution substation layout, one feeder substation, single bus substation, two transformer distribution substation, automatic switching, double bus substation, bus arrangements, fault, distribution substation protection, zones of protection, transformer and bus protection, feeder overcurrent protection, substation grounding.

Tex	Text books:								
1	Electric Power Distribution	4 th edition, 1997	A.S.Pabla, , .	Tata McGraw-Hill Publishing Company					
2.	Electric Power Distribution System Engineering	2 nd Edition 2008	Turan Gonen	CRC Press					

Reference books:

1	A Text Book of Electric Power	Edition (Year of publication)	. Khedkar and Dr. G. M. Dhole,.	Laxmi Publications
	Distribution Automation	, i ,		

Spelan	Aler .	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

II Semester									
EL3923 PE III : Power System Operation and Control				L= 3	T = ()	P = 0	Credits = 3	
Evaluation Scheme		MSEs *	TA**	ESE			Total	ESE Duration	
		30	30	40			100	3 Hrs	

MSEs* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment

UNIT-1:Load Forecasting

Introduction – Estimation of Average and trend terms – Estimation of periodic components – Estimation of Stochastic components : Time series approach – Auto- Regressive Model, Auto-Regressive Moving – Average Models – Kalman Filtering Approach – On-line techniques for non stationary load prediction.

UNIT-2: Unit Commitment

Constraints in unit commitment – Spinning reserve – Thermal unit constraints – Other constraints – Solution using Priority List method, Dynamic programming method - Forward DP approach Lagrangian relaxation method – adjusting.

UNIT-3: Generation Scheduling

The Economic dispatch problem – Thermal system dispatching with network losses considered – The Lambda – iteration method – Gradient method of economic dispatch – Economic dispatch with Piecewise Linear cost functions – Transmission system effects – A two generator system – coordination equations – Incremental losses and penalty factors-Hydro Thermal Scheduling using DP.

UNIT-4: Control of Power Systems

Review of AGC and reactive power control -System operating states by security control functions – Monitoring, evaluation of system state by contingency analysis – Corrective controls (Preventive, emergency and restorative) - Energy control center – SCADA system – Functions – monitoring, Data acquisition and controls – EMS system.

UNIT-5 : State Estimation

Maximum likelihood Weighted Least Squares Estimation: - Concepts - Matrix formulation - Example for Weighted Least Squares state estimation ; State estimation of an AC network: development of method – Typical results of state estimation on an AC network – State Estimation by Orthogonal Decomposition algorithm.

UNIT-6: Advance Measurements

Introduction to Advanced topics : Detection and Identification of Bad Measurements , Estimation of Quantities Not Being Measured , Network Observability and Pseudo – measurements – Application of Power Systems State Estimation .

Text books:

1 2	Electric Energy System Theory Introduction Power System Stability and Control	- an 2002	O.I.Elgerd P.Kundur	Tata McGraw Hill, New Delhi EPRI Publications, California
3	Power System Operation and Control		A.J Wood and B.F Wollenberg	John Wiley and Sons
Re	ference books:			
1	Computer Aided Power System Analysis and Control	1984	A.K.Mahalanabis, D.P.Kothari. and S.I.Ahson	Tata McGraw Hill publishing Ltd

Stelan	Aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

II Semester								
EL3924	EL3924 PE III : Transients in Power Systems			L= 3	T = (D P = 0	Credits = 3	
Evaluation Scheme		MSEs *	TA**	ESE		Total	ESE Duration	on
		30	30	40		100	3 Hrs	

MSEs* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment

UNIT-1: Travelling Waves On Transmission Line

Lumped and Distributed Parameters – Wave Equation – Reflection, Refraction, Behaviour of Travelling waves at the line terminations – Lattice Diagrams – Attenuation and Distortion – Multi-conductor system and Velocity wave.

UNIT-2: Computation Of Power System Transients

Principle of digital computation – Matrix method of solution, Modal analysis,Z transforms, Computation using EMTP – Simulation of switches and non-linear elements.

UNIT-3 : Lightning, Switching And Temporary Overvoltages

Lightning: Physical phenomena of lightning – Interaction between lightning and power system – Factors contributing to line design – Switching: Short line or kilometric fault – Energizing transients - closing and re-closing of lines - line dropping, load rejection - Voltage induced by fault – Very Fast Transient Overvoltage (VFTO)

UNIT-4: Behaviour Of Winding Under Transient Condition

Initial and Final voltage distribution - Winding oscillation - traveling wave solution -

UNIT-5 : Transformer under Surge Condition

Behaviour of the transformer core under surge condition – Rotating machine – Surge in generator and motor

UNIT-6:

Insulation Co-Ordination

Principle of insulation co-ordination in Air Insulated substation (AIS) and Gas Insulated Substation (GIS), insulation level, statistical approach, co-ordination between insulation and protection level –overvoltage protective devices – lightning arresters, substation earthing.

Tex	Text books:									
1	Electromagnetic transients in Power System	1996.	PritindraChowdhari	John Wiley and Sons Inc						
2	Electrical Transients in Power System	1991	Allan Greenwood	Wiley & Sons Inc. New York						
3	Surges in High Voltage Networks	1980	Klaus Ragaller	Plenum Press, New York						

Re	ference books:			
	Extra High Voltage AC	Second	Rakosh Das	Newage International (P) Ltd.,
	TransmissionEngineering	edition,19	Begamudre	New Delhi
		80		
	High Voltage Engineering	2004.	Naidu M S and	Tata McGraw-Hill
	High voltage Engineering	2004.	Kamaraju V	Publishing Company Ltd.,
			Kamaraju v	New Delhi
	IEEE Guide for safety in AC substation			
	groundingIEEE Standard 80-2000			

Stelan	Aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

II Semester							
EL3932	PE III : Solar System Design			L = 3	T = 0	P = 0	Credit = 3
Evaluation	MSE	TA	ESE	Total		ESE Duration	
Scheme	30	30	40	100		3 Ho	ours

Pre requisites: Basic knowledge of Renewable Energy.

Course Objectives:	Course Outcomes:				
To develop the knowledge of students regarding Solar Thermal and Solar Photovoltaic System design	 At the end of the course, the students will be able to: 1. Apply the knowledge of Solar cells and related parameters to design a solar PV system 2. Compare the different types PV Systems depending on connection scheme 3. Explain Battery performance and Determine the economic parameters associated with Solar Systems. 				

Unit 1: Design of Solar Cells

Upper limits of Cell parameters,Losses in Solar Cells, Solar cell design,Design for high I_{sc},Design for high V_{oc}, Design for high fill factor (FF)

Unit 2: Photovoltaic System Design

Standalone PV System configurations, Design methodology of PV systems, Wire sizing in PV System, Precise sizing of PV System

Unit 3: Hybrid PV System

Need of Hybrid System, Types of Hybrid PV Systems ,Issues with hybrid systems,

Unit 4: Grid connected PV System

Performance parameters for grid connection, Single stage grid connected PV System, Government policies for solar rooftop system.

Unit 5: Batteries for PV System and sizing PV

Battery parameters, Factors affecting battery performance, Battery charging and discharging methods, Batteries C-rate.

Unit 6: Economic Analysis

Introduction, Embodied Energy Analysis, Energy Density, Energy Payback time, Energy Production Factor, Life cycle Conversion efficiency, Lifecycle costing

Text books:

SN	Title	Year	Author	Publication
1	SolarPhotovoltaic:Fundamentals,TechnologiesandApplications	2011	C.S.Solanki	Third Edition, PHI Publication
2	Solar Energy, Fundamentals, Design, Modeling and Applications	2002	G. N. Tiwari	Narosa
3	Solar Energy: Principles of Thermal Collection and Storage	2006	S. P. Sukhatme and J. K. Nayak	Tata McGraw Hill

Reference books:

1	Renewable energy sources and emerging technologies	2008	D. P. Kothari	1st Edition PHI
2	Energy Technology :Non -conventional, Renewable and Conventional	2013	S. Rao and B.B. Parulekar	Khanna Publisher, New Delhi
3	NPTEL Videos on 'Design of Solar PV System'		Prof.L. Umanand	

Spelan	- Alex	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

			II Semes	ter			
EL3925	PE IV: [Distribtuted Automatic	on	L= 3	T = 0	P = 0	Credits = 3
Evaluation Scheme		MSEs *	TA**	ESE		Total	ESE Duration
		30 rks each will be conduct	30	40	will be consi	100	3 Hrs

UNIT-1: Distribution Automation and the utility system

Introduction to Distribution Automation (DA), control system interfaces, control and data requirements, centralized (Vs) decentralized control, DA System (DAS), DA Hardware, DAS software.

UNIT-2: Distribution Automation Functions

DA capabilities, Automation system computer facilities, management processes, Information management, system reliability management, system efficiency management, voltage management, Load management.

UNIT-3: Communication Systems for DA

DA communication requirements, Communication reliability, Cost effectiveness, Data rate requirements, Two way capability, Ability to communicate during outages and faults, Ease of operation and maintenance, Conforming to the architecture of data flow.

UNIT-4: Communication systems used in DA

Distribution line carrier (Power line carrier), Ripple control, Zero crossing technique, telephone, cable TV, Radio, AM broadcast, FM SCA, VHF Radio, UHF Radio, Microwave satellite, fiber optics, Hybrid Communication systems, Communication systems used in field tests.

UNIT-5 : Technical Benefits

DA benefit categories, Capital deferred savings, Operation and Maintenance savings, Interruption related savings, Customer related savings, Operational savings, Improved operation, Function benefits, Potential benefits for functions, function shared benefits, Guide lines for formulation of estimating equations, Parameters required, economic impact areas, Resources for determining benefits impact on distribution system, integration of benefits into economic evaluation.

UNIT-6: Economic Evaluation Methods

Development and evaluation of alternate plans, Select study area, Select study period, Project load growth, Develop Alternatives, Calculate operating and maintenance costs, Evaluate alternatives, Economic comparison of alternate plans, Classification of expenses and capital expenditures, Comparision of revenue requirements of alternative plans, Book Life and Continuing plant analysis, Year by year revenue requirement analysis, short term analysis, end of study adjustment, Break even analysis, Sensitivity analysis computational aids.

Te	xt books:		
1	A Text Book of Electric Power Distribution Automation	. Khedkar and Dr. G. M. Dhole,.	Laxmi Publications
2	Electric Power Distribution	A. S. Pabla	Tata McGraw Hill Publication, New Delhi
3	Distribution Automation	IEEE Tutorial Course	

Spelan	Aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. Scheme of Examination & Syllabus 2019

Integrated Power System(IPS)

II Semester								
EL3926 PE IV: Power Electronics for Renewable Energy Systems				ems	L= 3	T = 0	P = 0	Credits = 3
Evaluation Scheme		MSEs *	TA**		ESE	То	tal	ESE Duration
		30	30		40	1(-	3 Hrs

MSEs* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment

Course	Course
Objective	Outcome
To overview the different renewable energy system and generator usedand to understand their different configurations and topology. The objective is to study the various Grid interactive power converter topologies used in Wind and solar energy conversion system and their hybrid combination and the related power quality issues.	topologies and configurations, and characteristics.

UNIT-1:Introduction

Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) -Qualitative study of different renewable energy resources: Solar, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems.

UNIT-2: Solar Thermal and Photovoltaic System

Solar Thermal: Different Solar Concentrators and solar thermal applications Solar Photovoltaic: PV cell equivalent and V-I, P-V characteristics, DC-DC Converters and its role in Maximum Power Point Tracking (MPPT), MPPT techniques (Direct and Indirect)

UNIT-3: Solar PV converters and Configurations

PV inverters: PV inverter Configurations, PV based transformerless inverter topologies. Configuration: Standalone, Grid interactive, Bi-Modal systems, Grid synchronization (time and frequency Domain), Islanding and detection methods, Generic control for PV inverters.

UNIT-4: Wind Energy Conversion System (WECS)

WECS: Introduction to WECS, Wind turbine technologies, WECS configurations and fundamentals of WECS controls, wind MPPT control, operation and analysis of wind generators (IG, PMSG, SCIG, DFIG)

UNIT-5 : Power Converters, Configurations and Controls for Wind Energy Systems

Power Converters: AC Voltage Controllers, PWM inverters, Grid interactive inverters Configurations and Controls: Fixed speed WECS, Variable speed WECS (converter configurations for IG, PMSG based WECS and their controls)

UNIT-6 : Hybrid Renewable Energy System and Power Quality (PQ)

Need for Hybrid Systems and type of Hybrid systems, PQ issues in grid interconnections, measurement of voltage flicker, voltage dip, voltage swell, harmonics in grid integration and remedial measures.

1 Power Electronics Hand book	2001.		
	2001.	Rashid .M. H	Academic press,
2. Power Electronics for Modern W Turbines	ind 2006	F. Blaabjerg and Z. Chen	Morgan & Claypool Publishers, 2006
3 Non-conventional Energy Source	es 2006	B. H. Khan	Tata McGraw Hill,
4 Modern Power Electronics and A	C Drives 2001	B. K. Bose	Prentice Hall PTR

Stolan.	Stelan Del		1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

II Semester									
EL3926	EL3926 PE IV: Power Electronics for Renewable Energy Systems					T = 0	P = 0	Credits = 3	
Evaluation Scheme		MSEs *	TA**		ESE	То	tal	ESE Duration	
		30	30		40	10	00	3 Hrs	

Reference books:							
1	Wind energy system		Gray, L. Johnson	Prentice Hall inc			
2	Power Conversion and Control of Wind Energy System	2011	Bin Wu, Yongqiang Lang, Navid Zargari, Samir Kouro	John Willey & Sons Inc., Publications , IEEE Press.2011			
3.	Grid Converters for Photovoltaic and Wind Power Systems	2011	Remus Teodorescu. Marco Liserre, Pedro Rodriguez	John Willey & Sons Inc., Publications , IEEE Press.2011			
4.	Analysis of Electric Machinery and Drive Systems		P. C. Krause, O. Wasynzuk, and S. D. Sudhoff	John Willey & Sons Inc., Publications , IEEE Press.			
5.	Wind Power in Power System	2005	T. Ackermann	John Willey & Sons Inc., Publications , IEEE Press.2005			

Stelan	Aler .	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

II Semester

EL3927 PE IV: Control System Design				L= 3	T = 0	P = 0	Credits = 3
Fuchaction Cohom		MSEs *	ТА	ESE		Total	ESE Duration
Evaluation Scheme		30	30	40		100	3 Hrs

MSEs* = Three MSEs of 15 Marks each will be conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment

Course	Course
Objective	Outcome
The theory of design of control system is particularly useful for various analytical design approaches in various power system problems. Students will study the time domain and frequency domain approach for linear time invariant systems. They shall be explored to design of discrete state variable and state estimation using observers and the optimal control methods are covered for specific systems.	 Recall and explainthebasicsof conventional design method in time and frequency domain. Apply and solveproblemsfor design of discretesystems and analyse thestabilityof digitalcontrolsystem. Understand the preliminaryconceptof discrete time state variableanalysispole placementanddesign through state feedback. Explain the concepts of optimal control formulation of optimal control.

UNIT-1: CONVENTIONAL DESIGN METHODS IN TIME DOMAIN

Design specifications, Fixed configuration design, Time domain interpretations of PI, PD and PID controllers and lead, lag and lag-lead compensators- Root locus based design, Design examples.

UNIT-2: CONVENTIONAL DESIGN METHODS IN FREQUENCY DOMAIN

Frequency domain specifications, Correlation between time and frequency domain, Frequency domain interpretations of PI, PD and PID controllers and lead, lag and lag-lead compensators, Design examples

UNIT-3 : DESIGN IN DISCRETE TIME DOMAIN

Design of Discrete-time control system by conventional methods: Introduction, Digital implementation of analog controller (PID and lead-lag controllers) : Digital controllers, Realization of pulse transfer function by direct, Cascade and parallel programming. Design based on root locus method. Dead beat controller.

UNIT-4 : DISCRETE DESIGN IN FREQUENCY DOMAIN

Mapping between S plane and Z plane, Bilinear transformation, Design based on frequency domain for PID and lag lead compensators. . Design examples

UNIT-5: DISCRETE STATE VARIABLE DESIGN

Discrete pole placement- state and output feedback-estimated state feedback, state feedback with integral control, State Estimation Problem -State estimation- Luenberger's observer and reduced order observer. Concept of Sliding Mode controller.

UNIT-6: OPTIMAL CONTROL

Formation of optimal control problems-Results of Calculus of variations- Hamiltonian formulation-solution of optimal control problems-Evaluation of Riccati's equation. State and output Regulator problems-- dynamic programming-Design examples.

Text books:							
1	Modern control system Theory	2005	M. Gopal	New Age International			
2	Digital control systems	2004	Benjamin C. Kuo	Oxford University Press			
3	Discrete time control systems	2002	Katsuhiko Ogata	Pearson Education Asia			
4	4 Control systems principals and design 2003		M. Gopal	ТМН			
Re	ference books:						
1	Control system Design	2003	Graham C. Goodwin, Stefan F. Graebe and Mario E. Salgado	PHI (Pearson), 2003			
2 Digital Control of Dynamic Systems 2002. G. F. Franklin, J. D. Powe Workman			G. F. Franklin, J. D. Powell and M Workman	PHI (Pearson),			

Stelan	- Alex	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

II Semester								
EL3928	3928 Lab.: Power System Simulation			L= 3	T = 0	P = 4	Credits = 2	
		ESE		Total	ESE Duration			
Evaluation Scheme		60	40		100			

Course Outcomes:

Solve and design the power system problems.
Explain, compare various pulse width modulations and apply to different converter topologies
Use and evaluate the load balancing for compensation.
Design and analyse the renewable energy sources.
Design the various controls and its application in power system.
Apply and infer the performance of compensators in power system.

List of Practical's

- 1. To study and implement the different multilevel inverters
- 2. Analysis and implementation of sinusoidal PWM for multilevel inverters
- 3. To study and simulate PV array with varying temperature and insolation level
- 4. To study and execute the different modes of operation of SSSC
- 5. To study and implement TCR for a transmission line
- 6. To study and simulate vector controlled Im drive using 5 level diode clamped multilevel inverter
- 7. To study and implement Distribution Static Compensator
- 8. To study and simulate the open loop balancing algorithm for load balancing

Stelan	Apr	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Integrated Power System(IPS)

	I Semester								
	EL3929	Lab.: Power S	Power System Design			T = 0	P = 4	Credits = 2	
Evaluation Schomo	Evaluation Scheme		ТА	ESE		ESE Total		ESE Duration	
60 40 100			60	40		100			

Objective	Course Outcome				
	 Identify and explain the various aspectsAC and DC power transmission systems. Design and assessthe performance of AC transmission system 				
	 Develop optimized and robust HVDC transmission systems and evaluate the significance of the various parameters. 				

Practicals may be carried out on the following topics but are not limited.

- HVDC Transmission
- HVAC transmission.
- Steady state and transient stability.
- Voltage stability.
- Different fault analysis.
- Sub synchronous resonance.
- Reactive power compensation (shunt, series etc.).

Groups can be formed for some of the practical's consisting of four or five students for the following reasons to get every student involved in the practical

- (a) Different voltages and different power ratings in some of the practical may be assigned to them
- (b) Various reactive power compensators etc.

Spelan	Aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

III Semester

EL3939	Project Phase – I	L= 0	T = 0	P = 16	Credits = 8
Evelve the	Continuous Evaluation	ES	SF.	Total	ESE Duration
Evaluation Scheme	100			100	EGE Buldton

Objective	Course Outcome		
	 Identify research topic Carry out literature survey Analyze and solve the research problem Learn and use the suitable software tool To communicate effectively with proper presentation methods 		

Shelan	Aler .	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

IV Semester

EL3940	Project Phase – II	L= 0 T = 0		P = 24	Credits = 12
Evaluation	Continuous Evaluation	ESE		Total	ESE Duration
Scheme	60	4	0	100	

Objective	Course Outcome			
	 Analyze the system and achieve desired results using software/hardware tools Write and present the research paper based on project work Acquire in-depth knowledge of the subject for the benefit of the society 			

Shelau	Aler	June 2020	1.01	Applicable for AY 2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	