

Master of Technology SoE & Syllabus 2020 Communication Engineering

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M. Tech. SCHEME OF EXAMINATION 2020 Deptt. of Electronics & Telecommunication (Communication Engineering)

SoE No. PG-301

				_	Contact		Hours	ļ	% We	eighta	ge	ESE	
SI. No.	Sem	Course Code	Course Title	T/P	L	т	Ρ	Total Contact Hrs.	Credits	MSEs*	TA**	ESE	Duration Hours
		-	ISEM	ESTE	R		-	-	-				
1	1	ET3901	Mathematical Foundations for Communication Engineering	Т	3	0	0	3	3	30	30	40	3
2	1	ET3902	Passive RF Circuits & Systems	Т	3	0	0	3	3	30	30	40	3
3	1	ET3903	Lab: Passive RF Circuits & Systems	Р	0	0	2	2	1		60	40	
4	1	ET3904	Advanced Digital Communication	т	3	0	0	3	3	30	30	40	3
5	1	ET3905	Lab: Advanced Digital Communication	Р	0	0	2	2	1		60	40	
6	1	ET3906	Adaptive Signal Processing	т	3	0	0	3	3	30	30	40	3
7	1	ET3907	Lab: Adaptive Signal Processing	Р	0	0	2	2	1		60	40	
8	1		Professional Elective- I	т	3	0	0	3	3	30	30	40	3
9	1		Professional Elective- II	т	3	0	0	3	3	30	30	40	3
Ŭ				<u> </u>	10	°	¢	24	24	00	00	10	Ŭ
			Total		18	U	0	24	21				
	List o	f Profession	al Electives-I										
l	1	ET3908	PE I: Error Control Coding										
	1	ET3909	PE I: Embedded Systems & DSP Processor										
	1	ET3910	PE I: Pattern Recognition										
	l ist o	f Profession	al Electives-II										
	1	ET3911	PE II: Multimedia Communications										
	1	ET3912	PE II: Active RF Devices and Circuits										
	1	ET3913	PE II: Soft Computing										
			II SEN	IESTE	R								
1	2	ET3915	Advanced Antenna Theory	Т	3	0	0	3	3	30	30	40	3
2	2	ET3916	Lab: Advanced Antenna Theory	Р	0	0	2	2	1		60	40	
3	2	ET3917	VLSI Signal Processing	Т	3	0	0	3	3	30	30	40	3
4	2	ET3918	Digital Image processing	Т	3	0	0	3	3	30	30	40	3
5	2	ET3919	Lab: Digital Image processing	Р	0	0	2	2	1		60	40	
6	2	ET3920	Wireless Communications & Networks	Т	3	0	0	3	3	30	30	40	3
7	2		Professional Elective -III	Т	3	0	0	3	3	30	30	40	3
8	2	FTOOOO	Professional Elective -IV	Т	3	0	0	3	3	30	30	40	3
9	Z	E13928	Total	Р	0 18	0	2	∠ 24	21		100		
						v	v						
	List o	f Profession	al Electives-III										
	2	ET3921 ET3922	PE III: Selected Topics In Communication Sys	tems									
	2	ET3923	PE III: Detection & Estimation Theory										
	2	ET3924	PE III: Real Time Operating System										
	List o	f Profession	al Electives-IV										
	2	ET3925	PE IV: High Speed Networks										
	2	ET3926	PE IV: Wireless Sensor Networks										
	2	E13927	PE IV: MICro Electro Mechanical Systems										
			III SEN	IESTE	R								
1	3	ET3939	Project Phase-I	Р	0	0	16	16	8		100		
			Total		0	0	16	16	8				
				IFST	R								
1	4	ET3940	Project Phase-II	P	0	0	24	24	12		60	40	
			Total		0	0	24	24	12				
			Total of Credits						62				
MSE	s* = T	hree MSEs (of 15 Marks each will conducted and marks o	f hett	er 2	of th	iese	3 MSEs V	vill be co	nsidered	for C	ontini	IOUS
Ass	essme	nt			_								
TA *	* = for 1	Theory : 20 ma	arks on lecture quizzes, 8 marks on assignments, 2	marks	on c	lass į	perfo	rmance					
TA* *	= for P	ractical : MSP	A will be 15 marks each	1									
æ	fine	lawers .	Mer -		Jan,	20		1.0	00	Sem 1 8	Appli 2 AY	cable 2020-	for 21 & Sem 3
Chairperson		person	Dean (Acad. Matters)	Date	of F	Rele	ase	Vers	sion	& 4 AY 2021-22 Onwards		Dnwards	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3901–Mathematical Foundations for Communication Engineering

Course Objective	Course Outcome				
The student should be able to	The student will be able to				
	1) Calculate probabilities by applying probability laws.				
1) Understand probability laws.	2) Derive probability distributions of functions of				
2) Understand concept of random variable and	random variables.				
advanced density functions.	3) Identify an appropriate probability distribution for a				
3) Learn various types of distributions and	given discrete or continuous random variable.				
expectation.	4) Determine covariance and spectral density of				
4) Understand Random vectors and random	stationary random processes.				
processes.					

UNIT-1

Definitions, limitations of classical and relative-frequency-based definitions. Sets, fields, sample space and events; axiomatic definition of probability. Combinatory: Probability on finite sample spaces. Joint and conditional probabilities, independence, total probability; Bayes' rule and applications **06 Hours**

UNIT-2:

Definition of random variables, continuous and discrete random variables, cumulative distribution function (cdf) for discrete and continuous random variables; probability mass function (pmf); probability density functions (pdf) and properties. Jointly distributed random variables, conditional and joint density and distribution functions, independence; Bayes' rule for continuous and mixed random variables.**06 Hours**

UNIT-3:

Uniform, Gaussian and Rayleigh distributions; Binomial, and Poisson distributions; Multivariate Gaussian distribution Functions of a random variable, Functions of two random variables; Sum of two independent random variables.**06 Hours**

UNIT 4:

Expectation: mean, variance and moments of a random variable. Joint moments, conditional expectation, Moment-generating and characteristic functions and their applications, Bounds and approximations:.Schwarz Inequality, Chebyshev inequality and Chernoff Bound, Central limit theorem and its significance.

06 Hours

Etinelaury.	- tell	June 2020	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards		
YCCF-CF-1						

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3901 – Mathematical Foundations for Communication Engineering

Unit 5:

Random vector: Joint distribution and densities, multiple transformation, mean vector, covariance matrix and properties, simultaneous, characteristic functions of random vectors, parameter estimation **(06 Hours)**

Unit 6:

Basic definitions, important Random processes, continuous-time linear systems with random inputs white noise, classification of random processes, WSS processes and LSI systems.(06 Hours)

Text I	Text books:						
1	Probability and Random Processes	2002	H. Stark, J.W Woods	Pearson Education			
	Probability, Random Variables and						
2	Stochastic Processes	2002	A. Papoulis, S. U. Pillai,	McGraw Hill			
Refer	Reference books:						
1	Probability and Stochastic Processes	1992	R D Yates, D J Goodman	John Wiley and Sons			

Etinglands.	Aler	June 2020	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards		

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

572002 Desci	I Semester
E 13902 – Passi	/e RF Circuits and Systems
Course Objective	Course Outcomes
Students should be able to	Students will be able to
1) Understand various transmission lines and its characteristics.	 Analyze various transmission lines and its characteristics.
2) Study various microwave network models and passive components.	 Analyze various microwave network models and passive components.
 Learn various switches, phase shifters and MIC filters. 	 Apply the knowledge of various switches, phase shifters and MIC filters.
4) Understand various MMIC and MEMS technologies.	4) Explorevarious MMIC and MEMS technologies.

UNIT-1:

Review of Basic Transmission Line Theory, Planar Transmission Lines - Stripline, microstrip line, Suspended strip line and coplanar line; Parallel coupled lines in Stripline and microstrip – Analysis, Design and characteristics.06 Hrs

UNIT-2:

Microwave Network Analysis - Microwave network representation, Impedance and admittance matrices, Scattering parameters, Typical two-port, three port, four port networks; Impedance Matching Techniques - Smith chart, Matching networks using lumped elements, Single- and double-stub matching, Quarter wave transformer, Baluns06 Hrs

UNIT-3

Basic Passive Components -Lumped elements in MIC, Discontinuities and resonators in microstrip, Analysis and design of Stripline/microstrip components- Directional couplers, Power divider, Hybrid ring.

06 Hrs

UNIT-4:

Switches and Phase Shifters Basic series and shunt switches in microstrip; SPST and SPDT switches, Switched line, branch line coupled and loaded line phase shifters in microstrip, Applications in phased arrays.06 Hrs UNIT-5

MIC Filters - Lumped element filter design at RF. Impedance and Low pass scaling, Frequency transformation, High impedance/Low impedance low pass filter, Parallel coupled band pass filter, High pass filter, bandstop filter06 Hrs

Etinglanny.	aller -	June 2020	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3902 – Passive RF Circuits and Systems

UNIT-6:

Basics of MIC, MMIC and MEMS technologies - Substrates used.06 Hrs

Te	xt books:			
	Radio Frequency and Microwave			Pearson Education
1	Electronics	2001	M.M. Radmanesh,	Asia,
	Stripline-like Transmission Line for			New Age Intl. (P)
2	Microwave Integrated Circuits,	1989.	B. Bhat& S.K. Koul	Ltd.,
Re	ference books:			
	Radio Frequency and Microwave			
1	Communication Circuits – Analysis			
	and Design,	2001.	D. K. Misra,	John Wiley & Sons,

Etinelawork .	Apri	June 2020	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards		
YCCF-CF-4						

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3903 – Lab: Passive RF Circuits and Systems

 Course Objective Students should be able to 1) Understand various transmission lines and its characteristics. 	Course OutcomesStudents will be able to1) Analyze various transmission lines and its characteristics.
2) Study various microwave network model and passive components.	2) Analyze various microwave network models and passive components.
 Learn various switches, phase shifters and MIC filters. 	3) Apply the knowledge of various switches, phase shifters and MIC filters.
4) Understand various MMIC and MEMS technologies.	4) Explore various MMIC and MEMS technologies.

Ten Experiments based on

- 1. Low Pass, Band Pass, Band Stop Filters
- 2. Couplers
- 3. Phase Shifter
- 4. Power Divider
- 5. Hybrid ring Coupler
- 6. Switches

Etinelaway.	- tell	June 2020	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards		

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester

EI 5304 - Auvali	Leu Digital Communication
Course Objective	Course Outcomes
Students should be able to	Students will be able to
1) Learn Baseband representation, reception and probability of error	1) Distinguish various digital modulation techniques.
2) Understand the transmission errors in digital	 Analyze the probability of errors in digital communication systems.
 Understand the concept of spread spectrum modulation, its types and applications. 	 Apply spread spectrum modulation for various applications of communication systems.
4) Understand the practical applications of Multichannel and multicarrier communication systems	 Distinguish Multichannel and multicarrier communication systems

FT2004

UNIT-1:

Review of fundamental concepts and parameters in Digital Communications, Performance of BPSK and QPSK in AWGN channel, Performance of binary FSK and M-ary PSK in AWGN channel.06 Hrs

UNIT-2:

Minimum Shift Keying (MSK) Modulation, GMSK, Continuous Phase Modulation (CPM) Schemes Channel Characterization and Modeling, Orthogonal Frequency Division Multiplexing (OFDM), Carrier Synchronization, Timing synchronization06 Hrs

UNIT-3

Representations of band pass signal and systems, signal space representation, representation of digitally modulated signals, spectral characteristics of digitally modulated signals.06 Hrs

UNIT-4:

Baseband reception and probability of error, the ML and MAP detection strategies, ML detection with zero mean AWGN,the optimum filter, Schwarz's inequality, transfer function of optimum filter, matched filter, properties of Matched filter, correlation receiver,equalization,the zero forcing equalizer, adaptive equalizer, scrambling, the eye pattern.06 Hrs

UNIT-5

Spread spectrum signals for digital communications: Introduction to Spread Spectrum Modulation, DSSS, FHSS, and CDMA signals, Code Acquisition and Tracking, Spread Spectrum as a Multiple Access Technique. 06 Hrs

Etingland .	- tell	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards
		YCCE-CE-6		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester **ET3904** – Advanced Digital Communication

UNIT-6:

Multichannel and Multicarrier Systems; Digital Communications through Fading Multipath channels; Multi User Communications.06 Hrs

Те>	t books:			
		1995 4 th		
1	Digital Communications	Edition	J.G.Proakis	McGraw Hill,
2	Digital Communications	1998	Simon Haykin	John Wiley & Sons
Ref	erence books:			
	Principles of Digital Communications			
1	and Coding	1979	J. Viterbi and J. K. Omura	McGraw Hill,
			MarvinK.Simon,Jim K	
			Omura,RobertA. Scholtz,	
2	Spread Spectrum Communications	1995.	Barry K.Levit	John Wiley & Sons
	CDMA Principles of Spread			
3	Spectrum Communications	1995.	Andrew J Viterbi	Addison Wesley

Etimelanny.	April	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3905 – Lab:Advanced Digital Communication

Course Objective	Course Outcomes
Students should be able to	Students will be able to
 Learn Baseband representation, reception and probability of error 	1) Distinguish various digital modulation techniques.
 Understand the transmission errors in digital communication systems 	 Analyze the probability of errors in digital communication systems.
3) Understand the concept of spread spectrum modulation, its types and applications.	 Apply spread spectrum modulation for various applications of communication systems.
 4) Understand the practical applications of Multichannel and multicarrier communication systems 	 Distinguish Multichannel and multicarrier communication systems

Ten Experiments based on

- 1. BPSK
- 2. QPSK
- 3. MSK
- 4. MIMO
- 5. OFDM
- 6. Channel Estimation

Etinelaury.	- tell	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

	l Semester
ET3906 –Ad	aptive Signal Processing
Course Objective	Course Outcomes
Students should be able to	Students will be able to
1) Introduce the concept and need of wiener	1) Devise filtering solutions for optimising the cost
filters	function using wiener filters.
2) Learn the fundamentals of adaptive filters	2) Analyse convergence and stability issues using
and application e.g noise cancellation, interference cancelling etc.	LMS algorithm and its transform domain.
C C	3) Evaluate the performance Recursive Least-
3) Understand basic principles transform	Squares (RLS) techniques to improve
domain adaptive filters by using mathematical perspective	convergence behaviour.
	4) Devise filtering solutions for optimising using
4) Study adaptive signal processing algorithms	Kalman Filtering Adaptive beam forming&
(e.g., the LMS algorithm).	FTRLS algorithm.
5) Study Recursive least squares algorithms &	
FTRLS algorithm.	

UNIT-1:

Wiener filtering.Optimum linear prediction.Levinson- Durbin algorithm. Prediction error filters. 06 Hrs

UNIT-2:

Adaptive filters. FIR adaptive LMS algorithm.Convergence of adaptive algorithms.Fast algorithms.Applications; Noise canceller, echo canceller and equalizer.06 Hrs

UNIT-3

Transform domain adaptive filters, theorthogonalization property of orthogonal transforms, The transform domain LMS algorithm.06 Hrs

UNIT-4:

Recursive least – squares algorithms. Matrix inversion lemma. Convergence analysis of the RLS algorithm. 06 Hrs

UNIT-5

Adaptive beam forming. Kalman filtering.06 Hrs

UNIT-6:

Fast RLS algorithm, Least square forward prediction, Least square backward prediction, least square lattice, The RLS algorithm, The FTRLS algorithm. Case studies and Industrial Applications.06 Hrs

Frankanny.	Apr	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3906 – Adaptive Signal Processing

Те>	tt books:			
	Adaptive Filters:Theory&			
1	Applications		B.FarhangBoroujeny	wiley Publication
2	Adaptive Filter Theory	1996,(3/e),	Simon Haykin	Prentice- Hall
Ref	erence books:			
	Statistical and Adaptive Signal			
1	Processing	2005	D.G.Manolakis	McGraw Hill,
	Statistical Digital Signal			
2	Processing and Modelling	1995.	M.H.Hays,	John Wiley & Sons

Etwolaway.	- tell	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3907 – Lab:Adaptive Signal Processing

Со	Course Objective		Course Outcomes		
Students should be able to		Students will be able to			
6)	Introduce the concept and need of wiener filters	5)	Devise filtering solutions for optimising the cost function using wiener filters.		
7)	Learn the fundamentals of adaptive filters and application e.g noise cancellation, interference cancelling etc.	6)	Analyse convergence and stability issues using LMS algorithm and its transform domain.		
8)	Understand basic principles transform domain adaptive filters by using mathematical perspective.	7)	Evaluate the performance Recursive Least- Squares (RLS) techniques to improve convergence behaviour.		
9)	Study adaptive signal processing algorithms (e.g., the LMS algorithm).	8)	Devise filtering solutions for optimising using Kalman Filtering , Adaptive beam forming& FTRLS algorithm.		
10)) Study Recursive least squares algorithms & FTRLS algorithm.				

Ten Experiments based on

- 1. Random Number generator and finding correlation and autocorrelation
- 2. Wiener filter
- 3. LMS and NLMS
- 4. Adaptive equalizer
- 5. Linear predictor
- 6. RLS algorithm and fast algorithm

Etimoleway.	Aler	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards
		VCCE-CE-11		

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

l Semester
FT3908 – PE I: Error Control Coding

Course Objective	Course Outcomes			
Students should be able to	Students will be able to			
 Understand the need for error correction in data communication and storage systems. Understand numerical operations in finite fields by using both the exponential and polynomial representations of finite field elements. Study an ability to compare and contrast the strengths and weaknesses of various errors correcting code for a given application. Study different error correcting codes in digital communication system. 	 Apply the knowledge of error correction in data communication and storage systems. Analyze numerical operations in finite fields by using both the exponential and polynomial representations of finite field elements. Analyze an ability to compare and contrast the strengths and weaknesses of various errors correcting code for a given application. Demonstrate competence in analyzing and evaluating the practice of different error correcting coded in digital communication system. 			
digital communication system.				

UNIT-1:

Coding for reliable digital transmission and storage. Groups, Rings, Vector Spaces, Galois Fields, Polynomial rings 06 Hrs

UNIT-2:

Channel models, Linear Block codes, syndrome and error detection, the minimum distance of block code, standard array and syndrome decoding, Cyclic codes, polynomials, the division algorithm for polynomials, circuit implementation of cyclic codes.06Hrs

UNIT-3

Convolution codes, decoding algorithms for Convolution codes, Viterbi, Stack and Fano algorithms, Application of Convolution codes .06 Hrs

UNIT-4:

BCH codes, primitive elements, minimal polynomials, generator polynomials in terms of minimal polynomials, Reed Solomon Codes, Berlekamp-Massey and Euclid decoding algorithm, Decoding beyond the minimum distance Parameter, Applications of Reed-Solomon codes.06 Hrs

UNIT-5

Trellis coded Modulation, Combinatorial description of Block and Convolution codes, mapping by set partitioning, TCM design rules06 Hrs

Fineleway.	April	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	
YCCE-CE-12					

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3908 – PE I: Error Control Coding

UNIT-6:

Soft decision decoding algorithms, Iterative decoding algorithms, Turbo-decoding, Two-way algorithm, LDPC codes, Use of LDPC codes in digital video broadcasting, belief propagation (BP) algorithms, Space-Time codes.06 Hrs

Te	xt books:			
1	Error Control Coding: Fundamentals	2003.	Shu Lin and	Dranting Hall
	and Applications		Danicl J. Costello Jr	
2	Error Control Systems for Digital	4005	S. B Wicker	Prentice Hall
	Communication and Storage	1995		
Re	ference books:			
1	Theory and Practise of Error Control	2003.	Shu Lin and Danicl J.	Prontico Hall
	Codes		Costello Jr	Frendice Hall,
2	Error Control Systems for Digital Communication and Storage	1983.	Blahut R. E	Addisson Wesley
3	Algebraic codes for Data transmission	2003	Blahut R.E	Cambridge University Press
4	Fundamentals of Convolutional		Johannesson R and	IEEE press
	codes	1999	Zigangirov K.S	
_	Trellis structure of codes, Chapter		V. S Pless and W. C	
5	24 OT Handbook of Theory.		Huttman, A. Vardy	
	Mathematical methods &			vviiey
6	algorithms		Todd K Moon	

Etinglands.	Aler	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	
VCCE CE 13					

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3909 – PE I: Embedded Systems & DSP Processor

Course Objective	Course Outcomes			
Students should be able to	Students will be able to			
 Understand basics of embedded systems Understand ARM processor architecture and instruction set Understand basics of DSP processor Understand architectural features and instruction set of C3X DSP processor 	 Explore different technologies related to embedded systems Effectively utilise the knowledge gained about ARM processor architecture and its instruction set for programming. Explore basics of DSP processor architecture Effectively utilise the knowledge gained about c3x DSP processor and its instruction set for programming 			

UNIT-1:

Embedded Systems, Introduction, Design Metrics, Processor Technology, IC Technology, Design Technology, Design Productivity Gap, Custom Single purpose Processor Design, RT level design, FSMD, Data-paths, Optimization, Instruction set simulators for simple processors.06 Hrs

UNIT-2:

Architectural Features Of ARM: Processor modes, Register organization, Exceptions and its handling,Memory, Memory-mapped I/Os, ARM and THUMB instruction sets, Addressing modes, DSP extensions, ARM sample codes 06Hrs

UNIT-3

ARM7/9 Core: H/W architecture, Timing diagrams for Memory access, Co-processor interface, Debug support, Scan chains, Embedded Real Time ICE, Hardware and software breakpoints. Buses: AMBA, ASB, APB, Development tool like Compilers, Debuggers, IDE etc06 Hrs.

UNIT-4:

DSP Architecture: MAC, Modified bus structures and Memory access schemes, Multiple access Memory , Multiported memory, VLIW architecture, Pipelining, Special addressing modes, On chip peripherals. 06 Hrs

UNIT-5

TMS320C3X -32 bit floating point DSP Processor: Introduction, features, Applications, Block diagram, Internal architecture, CPU & data paths, Functional units, Addressing modes, Memory architecture, External memory accesses, Pipeline operation, Peripherals. 06 Hrs

Flavelanny.	aller -	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3909 – PE I: Embedded Systems & DSP Processor

UNIT-6:

Assembly language programming. Hardware tools: DSP and other DSP boards Software tools: Assembly language tools.06 Hrs

Te	xt books:					
1	ARM System Developer's Guide:	2004	Sloss Andrew N, Symes	Morgan Kaufman		
	Designing and Optimizing		Dominic, Wright Chris	Publication		
2	Digital signal processors	2002, 1 edition	Venkataramani, M Bhaskar	Tata McGraw Hill		
Re	Reference books:					
1	ARM System-on-Chip Architecture	2nd	Steve furber	Poorson Education		
		Edition,2002		realson Education		
2	Emboddod System Dooign	2002, 1s	tFrank Vahid and Tony	Michy Dublication		
	Embedded System Design	Edition	Givargis	villely Fublication		
3	Embedded System Design	2003	Raj Kamal	Tata McGraw Hill		

Etwolaway.	April	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards
VCCE CE 1E				

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

	I Semester						
ET3910 – PE	I: Pattern Recognition						
Course Objective	Course Outcomes						
Students should be able to	Students will be able to						
1) Equip students with basic mathematical and statistical techniques commonly used in pattern recognition.	 Identify and describe pattern recognition techniques and their roles in building intelligent machines 						
2) Understand clustering and probability theory to handle uncertainty and solve engineering problems	 Recognize the feasibility of applying pattern recognition methodology for a particular problem in pattern classification and regression Apply clustering and probability theory to handle 						
3) Introduce to the various pattern recognition algorithms for a given problem.	uncertainty and solve engineering problems 4) Evaluate and compare solutions by various pattern recognition approaches for a given problem.						

UNIT-1:

Introduction, Applications of Pattern Recognition, Statistical Decision Theory, The Internet Pointers to the Literature, Problems05Hrs

UNIT-2:

Probability, Probabilities of Events, Random Variables, Joint Distributions and Densities Moments of Random Variables, Estimation of Parameters from Samples, Minimum Risk Estimators, Problems .06Hrs

UNIT-3

Statistical Decision Making

Introduction, Bayes' Theorem, Multiple Features, Conditionally Independent Features, Decision Boundaries, Unequal Costs of Error ,Estimation of Error Rates ,The Leaving-One-Out Technique, Characteristic Curves, Estimating the Composition of Populations, Problems07Hrs

UNIT-4:

Nonparametric Decision Making

Introduction, Histograms, Kernel and Window Estimators, Nearest Neighbor Classification Techniques, Adaptive Decision Boundaries, Adaptive Discriminant Functions, and Minimum Squared Error Discriminant Functions, Choosing a Decision Making Technique, Problems.07Hrs

UNIT-5

Clustering Introduction, Hierarchical Clustering, Partitional Clustering, Problems07 Hrs.

Etinelany.	Apr	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3910 – PE I: Pattern Recognition

UNIT-6:

Recent trends in Pattern Recognition

03Hrs

Te	Text books:					
1	Pattern Recognition and Image		Earl			
	Analysis		Gose,RichardJohnsonbaug	Prentice Hall		
			h			
2		2006 2nd	Richard O. Duda, Peter E.	John Wiley,		
	Pattern Classification	2000,2110	Hart and David G.			
		Edition	Stork			
Re	Reference books:					
1	Pattern Recognition and Machine	2009	C. M. Bishop	Springer		
	Learning			opiniger,		
2	Pattern Recognition	2009	Theodoridis and k			
	Ŭ		Koutroumbas	Academic Press		

Etimelanny.	April	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards
YCCF-CF-17				

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3911 – PE II: Multimedia Communications

Course Objective	Course Outcomes
Students should be able to	Students will be able to
 Understand basic concept of digital image representation 	1) Describe features of various image file formats
2) Learn basics of video and digital audio signal	2) Explain characteristics of video signals like
3) Understand the concepts of image compression	NTSC,PAL,SECAM Implement and describe various image compressiontechniques
4) Understand the concepts of video compression	 Explain various video compression techniques Explain various audio compression techniques
5) Understand the concepts of audio compression	, p

<u>UNIT-1:</u>

Introduction to multimedia, concept of non-temporal and temporal media, Graphics & image data representation: graphics & imagedata types, computer image processing: Image synthesis, analysis and transmission, popular file formats(GIF, TIFF, JPEG, PNG) 06 Hrs

<u>UNIT-2:</u>

Fundamental concepts in video Types of video signals: component, composite and s-video, analog video :NTSC, PAL, SECAM video, digital video : chroma sub-sampling, CCIR standards for digital video, HDTV, **06 Hrs**

<u>UNIT-3:</u>

Basics of digital audio: Digitization of sound, MIDI, quantization and transmission of audio

<u>UNIT-4:</u>

Multimedia data compression

Lossless compression algorithms: Run length coding, Huffman coding, arithmetic coding Lossy compression algorithms - DCT, Wavelet- Based Coding Basic image compression standard- JPEG- main steps in JPEG Image compression, Image preparation,

JPEG modes- Lossy sequentialDCT based, Expanded lossy DCT based, Lossless and hierarchical mode 06 Hrs

<u>UNIT-5:</u>

Video compression

Introduction to video compression, video compression based on motion compensation, search for motion vectors, detail study of various video compression standards-MPEG-1, MPEG-2, MPEG-4, MPEG-7

06 Hrs

06 Hrs

<u>UNIT-6:</u>

Audio compression

Basic audio compression techniques, MPEG audio compression, Applications of multimedia related to image and video processing 06 Hrs

Etimelanny.	Met -	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	
YCCE-CE-18					

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3911 – PE II: Multimedia Communications

Тех	Text books:						
1	Fundamentale of Multimedia	2004	Za Nian Li Mark	C Drow	PHI/Pearson		
	Fundamentals of Multimedia	2004	Ze-Man LI, Mark	5 Drew	Education		
2			Steinmetz,				
2	Multimedia Applications	2004	Nahrst		Springer		
Reference books:							
	Multimedia Communications:						
1	Applications, Networks,		Fred		Addison-		
	Protocols and Standars	2001	Halsall		Wesley		

Etimelanny.	April	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards
VCCE CE 10				

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3912 – PE II: Active RF Devices and Circuits

Con Stu 1) 2) 3) 4) 5)	urse Objective dents should be able to Understand active devices, and their modeling. Perform Amplifier Stability ,Stability Circle and Single stage amplifier design for specified gain. An understanding amplifier design unilateral and bilateral cases and for maximum gain. Learn detector and power amplifiers. Understand theory and characteristics of	 Course Outcomes Students will be able to 1) Explain different types RF Diodes, Linear &Non linear Diode Models. 2) Design Two Port power gain, Amplifier Stability and for Specified Gain 3) Devise Characteristics and equivalent circuit of detector and power amplifier. 4) Perform measurements on mixer, Oscillator and PLL
5)	Understand theory and characteristics of mixer, oscillator, PLL.	

<u>Unit 1</u>

Active RF Component & their Modeling: RF Diodes, Linear &Non linear Diode Models, small & large signal Model of BJT & FET, Active Device Measurements **06 Hrs**

<u>UNIT 2</u>

Transistor Amplifiers - Types of amplifiers. S parameter characterization of transistors; Two Port power gain Amplifier Stability , Stability Circle , Test for Unconditional Stability, MOSFETs , Equivalent circuit model.06 Hrs

UNIT-3:

Single stage amplifier design- unilateral and bilateral cases, Design for Maximum Gain Constant gain, design for Specified Gain , DC bias circuits for amplifiers; **06 Hrs**

<u>UNIT-4</u>

Detectors - Point contact and Schottky barrier diodes. Characteristics and equivalent circuit, Theory of microwave detection, Detector circuit design, FM detectors. Low Noise amplifier and Power amplifier : Class A, B, AB, C, D, E, F**06 Hrs**

<u>UNIT-5:</u>

Types of mixers.Mixer theory and characteristics.SSB versus DSB mixers.Single-ended mixer and singlebalanced mixer. Double balanced and image rejection mixers;**06 Hrs**

<u>UNIT-6</u>

Oscillators Oscillator versus amplifier design, Oscillation conditions; Gunn diode Modes of operation, Equivalent circuit. Design of Gunn diode oscillator, FET oscillators. Frequency tuning techniques.Phase Locked Loop (PLL).06 Hrs

Finelanny.	- tel	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards
YCCE-CE-20				

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester

ET3912 – PE II: Active RF Devices and Circuits

Tex	Fext books:						
	Radio Frequency and Microwave						
1	CommunicationCircuits Analysis and Design	2004	D. K. Misra	John Wiley,			
2	Microwave Engineering	1998	D. M. Pozar	John Wiley			
3.	RF Circuits Design		Renhold Ludwig and PavelBretchko	Prentice Hall			

Re	ference books:			
	Microwave Transistor Amplifiers			Prentice
1	Analysis andDesign	1997.	G. Gonzalez	Hall
	The Design of CMOS Radio-			CAMBRID
2	FrequencyIntegrated Circuits	Second	Thomas H. Lee	GE
	Microwave and Millimeter Wave Phase			
	Shifters, Vol. II- Semiconductor And			Artech
3	Delay Line Phase Shifters	1991	S.K. Koul and B. Bhat	House
	Microwave Circuit Design using		G.D. Vendelin, A.M.	
4	Linear andNonlinear Techniques	1990	PavioandU.L. Rhode	

Etinelawork .	Met -	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester				
ET3913 –	PE II: Soft Computing			
Course Objective Students should be able 1) To have general understanding of soft	Course Outcomes Students will be able to 1) Identify and describe soft computing techniques			
artificial neural networks, genetic algorithms, fuzzy sets and fuzzy logic systems.	 and their roles in building intelligent machines 2) Recognize the feasibility of applying a soft computing methodology for a particular problem andApply genetic algorithms to optimization 			
algorithm, genetic inheritance operator, the performance of algorithm and applications.	problems. 3) Identify supervised/unsupervised neural networks algorithms to solve pattern classification problems			
3) To introduce the fundamentals and explore the architecture of supervised and unsupervised neural networks.	 Apply fuzzy logic and reasoning to handle uncertainty and solve engineering problems 			
 To discuss the basic concept of fuzzy set theory and understand the hybrid architectures, fuzzy logic and fuzzy interface 				

Unit 1

Genetic algorithms: Population based search techniques, evolutionary strategies, mathematical foundations of genetic algorithms, search operators, genetic algorithms in function and combinational optimization, hybrid algorithms, application to pattern recognition**06 Hrs**

Unit 2

Introduction of neural networks, NN Architecture Neural learning and laws, Applications of ANN Evaluation of network,

Supervised Learning:Single layer network: MP neuron, Perceptron, Perceptron training algorithm, LMS algorithm, ADALINE06 Hrs

Unit 3

Multiplayer network: Multilevel Discrimination, Backpropogation Algorithm, Setting the parameter values, Accelerating the learning Process, MADALINE, Adaptive Multilayer Networks, Recurrent Network, RBF networks, **06 Hrs**

Unit 4

Unsupervised Learning: Winner Take Network, Learning Vector Quantizer, ART Networks, self-organizing feature maps, PCA, Associate Models**06 Hrs**

Unit 5

Overview of Crisp Sets, Concepts of Fuzzy sets, representation of fuzzy sets, extension principle, fuzzy compliments, t-norms and t- conorms Fuzzy numbers, arithmetic operation on intervals and on fuzzy sets, lattice of fuzzy numbers**06 Hrs**

Frankrowy.	all the	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech. SoE & Syllabi 2020-21

Communication Engineering

I Semester ET3913 – PE II: Soft Computing

Unit 6

Fuzzy equations, fuzzy relations, Fuzzy controllers, Defuzzification Methods, Fuzzy Inference Techniques, applications of fuzzy logic06 Hrs

Te	xt books:			
1	Neural networks	2004	C. Mohan and S. Ranka	Penram publications
2	Fuzzy sets and fuzzy logic, Theory and Applications,	2009	George J. Klir, Bo Yuan	PHI
3	Neural Networks: A comprehensive foundation	1999	S. Haykin	Pearson
Re	ference books:			
1	Introduction to artificial neural networks	1997	J. M. Zurada	Jaico publishing
2	Artificial Neural Networks	1999	B. Yejnanarayana	PHI
3	Neural Networks, Fuzzy Logic, and Geneticalgorithms, Synthesis and Applications	2006	S.Rajasekaran, G.A.ViayalakshmiPai	Prentice Hall

Etizelanny.	April	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester

ET3915 – Advanced Antenna Theory

Со	urse Objective	Со	urse Outcome
The student should be able to		Th	e student will be able to
5)	Learn the basic principles and of antenna	1)	Evaluate various parameters of antennas.
	parameters.	2)	Analyze performance parameters of various
6)	Design and analyze antennas & Arrays.		antennas & antenna array.
7)	Design and Analyze Planer antenna	3)	Understand smart antenna measurement
8)	Design & Analyze aperture, Reflector Antennas		techniques.
9)	Study different Smart antenna techniques	4)	Design and analyze various antenna

UNIT-1:

Fundamental Parameters of Antenna, Radiation Integrals & Auxillary Potential Function **06Hrs**

UNIT-2:

Planar Antennas Microstrip rectangular and circular patch antennas. Analysis and design, Feeding Methods; Circularly polarized microstrip antennas, Broadbanding techniques. Printed slot antennas. **06Hrs**

<u>UNIT-3</u>

Yagi array of linear elements and printed version, Log-periodic dipole array. Frequency Independent Antennas Planar spiral antenna, **06Hrs**

<u>UNIT-4:</u>

Array Theory Linear array; Broadside and end fire arrays, Self and mutual impedance of between Linear elements, grating lobe considerations.Planar array, Array factor, beamwidth, directivity. Example of microstrip patches arrays and feed networks & analysis. **06Hrs**

<u>UNIT-5</u>

Aperture Antennas- Field equivalence principle, Babinet's principle. Rectangular waveguide horn antenna, Parabolic reflector antenna. Uniqueness theorem**06Hrs**

<u>UNIT-6:</u>

Antennas for mobile communication. Handset antennas: FIFA, Smart antennas, Switch beam system, Adaptive array system, Spatial Division Multiple Access. **06 Hrs**

Etinelanny.	Apr	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester ET3915 – Advanced Antenna Theory

Тех	t books:			
1	Antenna Theory and Design	1997.	C. A. Balanis	John Wiley & Sons
Ref	erence books:			
	CAD of Microstrip Antennas for			
1	Wireless	1996.	R.A. Sainati	Artech House
	Applications		R Gara P Bharbia I	
2	Antenna design Handbook	1988	Bahl, and A. Ittipiboo	Artech House.
			J. R. James, P.S. Hall	
3	Microstrip Antennas: Theory & Design		and C.Wood, , Peter Peregrinns	UK

Etinolaway.	Met .	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	
VCCE CE 35					

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester ET3916 – Lab: Advanced Antenna Theory

Course Objective	Course Outcome
The student should be able to	The student will be able to
1) Learn the basic principles and of antenna	1) Evaluate various parameters of antennas.
parameters.	2) Analyze performance parameters of various
2) Design and analyze antennas & Arrays.	antennas & antenna array.
3) Design and Analyze Planer antenna	3) Understand smart antenna measurement
4) Design & Analyze aperture, Reflector Antennas	techniques.
5) Study different Smart antenna techniques	4) Design and analyze various antenna

Sr. No. Ten Experiments Based on

- 1. Microstrip patch antenna
- 2. Slot Antenna
- 3. YagiUda Antenna
- 4. Log periodic Antenna
- 5. Horn Antenna
- 6. Antenna Arrays

Etingland .	- tell	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester

Co	urse Objective	Со	urse Outcome		
Th	e student should be able	The student will be able to			
1)	To understand basic concepts of implementing DSP algorithms in VLSI circuits	1)	Design parallel and pipelining processing systems for speed, power and area optimization.		
2)	To learn about the concept of pipelining and parallel processing in VLSI.	2)	Implement the pipelined and parallel architectures using folding and unfolding techniques.		
3)	To understand the analysis of VLSI system with high speed and low power.	3)	Analyse Systolic Design for Space Representations containing Delays		
4)	To equip the students with knowledge of Systolic Design for Space Representations containing Delays	4)	Apply algorithmic strength reduction techniques such as Fast Convolution algorithms and FDCT algorithms for increasing the speed of computation.		
5)	To learn the algorithms for numeric and algorithmic strength reduction.	5)	Design DSP algorithms with reduced numerical strength by subexpression sharing techniques.		

UNIT-1:

Introduction to DSP systems – Typical DSP algorithms, Data flow and Dependence graphs - critical path, Loop bound, iteration bound, longest path matrix algorithm, Pipelining and Parallel processing of FIR filters, Pipelining and Parallel processing for low power **06Hrs**

UNIT-2:

Retiming – definitions and properties. Unfolding – an algorithm for unfolding, properties of unfolding, sample period reduction and parallel processing application . **06Hrs**

<u>UNIT-3</u>

Folding transformation, Register minimisationtechniquesSystolic architecture design, FIR systolic arrays, selection of scheduling vector, 2d systolic array design, systolic design for space representations containing delays. **06Hrs**

<u>UNIT-4:</u>

Fast convolution – Cook-Toom algorithm, modified Cook-Toom algorithm Pipelined and parallel recursive filters – Look-Ahead pipelining in first-order IIR filters, Look-Ahead pipelining with power-of-2 decomposition, Clustered look-ahead pipelining, Parallel processing of IIR filters, combined pipelining and parallel processing of IIR filters. 06 Hrs

<u>UNIT-5</u>

Bit-level arithmetic architectures – parallel multipliers with sign extension, parallel carry-ripple and carry-save multipliers, Design of Lyon's bit-serial multipliers using Horner's rule, bit-serial FIR filter, CSD representation, CSD multiplication using

Horner's rule for precision improvement

06 Hrs

Fineluny.	aler	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester ET3917 –VLSI Signal Processing

<u>UNIT-6:</u>

Algorithmic strength reduction in filters and transforms - 2-parallel FIR filter, 2-parallel fast FIR filter, DCT architecture

Numerical strength reduction- subexpression elimination, multiple constant multiplication, iterative matching, sub-expression sharing in digital filters, additive and multiplicative number splitting 6 Hrs

Text books:

1	VLSI Digital Signal Processing Systems, Design and implementation	2007 1 Edition) N	Keshab K. Parhi	Wiley Interscience,.
Refe	erence books:				
4	"DigitalSignalProcessingwithField	2nd	,	LL Mover Resea	Springer
I	Programmable Gate Arrays".	2004		U. Meyer- Dease,	Springer,

Etimelanny.	April	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	
VCCE CE 28					

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester

	EI 5910- Digital		age Flucessing
Co	ourse Objective	Со	urse Outcome
Th	e student should be able	Th	e student will be able to
1)	Learn the fundamentals of digital image processing algorithms and filtering methods.	1)	Apply basic image processing algorithms for image enhancement.
2)	Study the performance of digital images in	2)	Interpret the digital images in frequency domain
	frequency domain.		by using various transform techniques.
3)	Learn restoration, compression and segmentation of digital images through various	3)	Understand noise models and degradation process for image restoration
	algorithms	4)	Implement the algorithms for image compression
4)	Understand the process of image representation		and segmentation.
	and description		Implement the algorithms for image
			representation and description

UNIT I:

Digital image fundamentals - image acquisition, representation, visual perception, quality measures, Sampling and quantization, basic relationship between pixels, imaging geometry, color spaces, Image enhancement - point processing, spatial domain filtering and Frequency domain filtering.06Hrs

UNIT II:

Image transforms - DFT, DCT, Haar, KL transform, Wavelets and multiresolution processing, Sub-band coding, Multiresolution expansion, One dimensional wavelet transform, Wavelet series expansion, Discrete wavelet transform, Continuous wavelet transform, fast wavelet transform, 2-D wavelet transform, Wavelet packets

06Hrs

UNIT III: Image restoration/degradation model, Restoration-spatial domain filtering, Periodic Noise Reduction by Frequency Domain filtering, Motion debluring, Estimation the degradation function, Inverse filtering, Minimum Mean Square Error (Wiener Filtering), Constrained Least square filter.06Hrs

UNIT IV: Image compression – Data redundancy, lossless and lossy compression techniques, standards for image compression-JPEG, JPEG200006Hrs

UNIT V:

Image Segmentation-The detection of Discontinuities: Point, Line and Edge Detections Gradient Operators and Laplacian, Edge linking and Boundary detection: Local Processing and Global Processing Via Hough Transform, Thresholding. Region based segmentation, Clustering technique, Active Contour.06Hrs

UNIT VI:

Representation Schemes, Chain Codes, Polygon Approximation, signatures, Skeleton, Boundary Descriptors: Simple Descriptors, Shape Numbers, Fourier Descriptors, Region Descriptor: statistical moments, simple descriptor, Topological descriptor, Texture, Dilation and erosion, opening and closing hit-or-miss transformation, morphological algorithms **06Hrs**.

Finelunes.	aller -	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester ET3918- Digital Image Processing

Text	books:
------	--------

1 2	Digital Image Processing Fundamentals of Digital Image processing	2^{nd} edition 2^{nd} edition	R.C. Gonzalez & R.E. Woods A. K. Jain	Wesley/Pearson education publication 2002 PHI publication
Refer 1 2	ence books: Digital Image processing using MATLAB Digital Image processing	2 nd edition 3 rd Edition	R.C. Gonzalez & R.E. Woods William K. Pratt	Wesley/Pearson education publication 2002 John Wiley 2004

Etinelawork .	Ales	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

	II Seme	ster	
FT2018_1ah		Image	Processing

E13310-Ldy.	Digital illiage Processing
Course Objective	Course Outcome
The student should be able	The student will be able to
1) Learn the fundamentals of digital image processing algorithms and filtering methods.	 Apply basic image processing algorithms for image enhancement.
2) Study the performance of digital images in	2) Interpret the digital images in frequency domain
frequency domain.	by using various transform techniques.
3) Learn restoration, compression and segmentation of digital images through various	 Understand noise models and degradation process for image restoration
algorithms	4) Implement the algorithms for image compression
4) Understand the process of image representation	and segmentation.
and description	Implement the algorithms for image
	representation and description

Ten Experiments based on

- 1. Image Enhancement & Spatial Domain Filtering
- 2. Image Transforms
- Frequency Domain Filtering 3.
- 4. Image Compression
- 5. **Image Segmentation**
- Morphological Operations 6.

Etwolaway.	April	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

1	I Semester		
ET3920 – Wireless (Communications & Networks		
Course Objective	Course Outcome		
The student should be able to	The student will be able to1) Quantify causes and effects of path loss and signal		
1) Understand the concept of radio propagation,	fading on received signal characteristic and used		
fading and different techniques to improve	various technique to improve signal quality and link		
signalquality and link performance.	performance.		
2) Understand various Multicarrier Modulation	2) Analyze various Multicarrier Modulation and		
and Multiple access techniques for wireless	Multiple access techniques for wireless		
communication	communication		
3) Learn Wireless Systems and Standards	3) Analyze GSM & CDMA systems and understand the		
4) Know various generations of mobile	fundamentals of wireless networking.		
communication systems	4) Elaborate and compare various generations of		
	mobile communication systems		

UNIT-1:

Radio Propagation Characteristics: Reflection, diffraction and Scattering, Models for path loss, shadowing and multipath fading (delay Spread, coherence band width, coherence time, Doppler spread), Multipath Fading Models.**06 Hrs**

UNIT-2:

Diversity: Realization of Independent Fading Paths, Diversity System Model, Selection Combining, Threshold Combining, Maximal Ratio Combining, Equal-Gain Combining, Moment Generating Functions in Diversity Analysis, Diversity Analysis for MRC, Diversity Analysis for EGC and SC, Diversity Analysis for Noncoherent and Differentially Coherent Modulation, Transmitter Diversity **06 Hrs**

UNIT-3

Multicarrier Modulation ,Fading across Subcarriers , Frequency Equalization , Precoding , Adaptive Loading ,Coding across Sub channels RAKE receivers ,**06 Hrs**

UNIT-4.:

Multiple access techniques for wireless communication: SDMA ,Packet radio protocols: Pure & Slotted ALOHA,CSMA 06 Hrs

UNIT-5:

Wireless Systems and Standards: GSM-GSM services and features, Architecture, Radio Subsystem, GSM channel types, Frame structure and signal processing in GSM, CDMA-Forward CDMA channel, Reverse CDMA channel **06 Hrs**

Travelaury .	Aler	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	
YCCF-CF-32					

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester ET3920 – Wireless Communications & Networks

UNIT-6:

3G Overview, 3GPP Network Architecture, 4G features and challenges, Introduction to wireless LANs - IEEE 802.11 WLANs, Blue tooth , Wi-Max, Zigbee 06 Hrs

TEX	ТВООК		_		
	Wireless		Rappaport.	-	F 1 <i>i i</i>
1	communications	2003.	1.5	Pearsor	Education
2	VVIreless Communications	2007	Androa Caldomith	Combrid	lao University Dress
2	Communications	2007.	Andrea Goldsmith	Cambrid	ige University Press
RFF					
			HARRY R.		
1.	FixedBroadbandWireless	2003.	ANDERSON		John Wiley –India
	System Design				2
	-)	2nd Edition,	Smith P.E.,	Danie	
2.	3G Wireless Networks	2007	Clint. and	I	Tata McGraw Hill
			Collins		
			Vija	Morga	
3.	Wireless Communication and	2007	y. K. Garg,	n	Publishers,
					http://books.elsevier.com/978
	Networking		Kaufmann		0123735805
	Principles of Wireless		KavethPahlavan,. K		
4.	Networks	2006.	Prashanth		Prentice Hall of India,
			Krishnamuorthy		
5.	WirelessCommunication	2nd Ed., 2007.	William Stallings		Pearson / Prentice Hall of
	sand Networks				
;					India,

Etingland .	Aler	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards
VCCE-CE-33				

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

	II Semester						
	ET3921 –PE III: Selected Top	ics i	in Communication Systems				
Course O	bjective	Со	urse Outcome				
The stude	ent should be able to	Th	e student will be able to				
 Make the students understand the fundamentals physical modeling of channels in free space along with time varying systems. 		1)	Understand and design physical modeling of channels in free space along with time varying systems.				
2) Under detect	2) Understand the working of time diversity detection in a Rayleigh fading channel and to	2)	Compare and analyze Non-coherent and Coherent detection Time diversity.				
multip	analyze orthogonal frequency division multiplexing.		Elaborate key features of various standards related to modeling of MIMO,SIMO,MISO				
3) Under along fading	stand the modeling of MIMO,SIMO,MISO with time varying channels and selective .	4)	Understand and analyze V-BLAST and D-BLAST architecture				
4) Under chann	stand and compare parallel and scalar els.	5)	Design and understand multiplexing tradeoff - Universal code design for scalar channels, parallel channels				

UNIT-1:

Physical modeling for wireless channels: Free space, fixed transmit and receive antennas, moving antenna, Reflection from wall, Reflection from a ground plane, Power decay with distance and shadowing ,Moving antenna with multiple reflectors Input /output model of the wireless channel: linear time-varying system, Baseband equivalent model, A discrete-time baseband model, Degrees of freedom, Additive white noise Time and frequency coherence :Doppler spread and coherence time, Delay spread and coherence bandwidth. Statistical channel models :Rayleigh and Rician fading. **06Hrs**

UNIT-2:

Detection in a Rayleigh fading channel: Non-coherent and Coherent detection Time diversity Antenna diversity : Receive diversity, Transmit diversity, MIMO. Frequency diversity: Single-carrier with ISI equalization, Direct-sequence spread-spectrum**06 Hrs**

<u>UNIT-3</u>

AWGN channel capacity Capacity of Flat: Fading Channels- Channel Distribution Information (CDI), Channel Side Information at Receiver,

Channel Side Information at Transmitter and Receiver, Capacity with Receiver Diversity Capacity of Frequency: Selective Fading Channels-Linear time-invariant, Time-Varying Channels **06 Hrs**

UNIT-4:

Multiplexing capability of deterministic MIMO channels : Capacity via singular value decomposition, Rank and condition number. Physical modeling of MIMO channels: Line-of-sight SIMO channel ,Line-of-sight MISO channel , Antenna arrays with only a line-of-sight path ,Geographically separated antennas,Line-of-sight plus one reflected path Modeling of MIMO fading channels. **06 Hrs**

Etingland .	Alex	June 2020	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards		
YCCF-CF-34						

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester

ET3921 – PE III: Selected Topics in Communication Systems

<u>UNIT-5</u>

The V-BLAST architecture Fast fading MIMO channel: Capacity with CSI at receiver and Full CSI. Receiver architectures: Linear

decorrelator, Successive cancellation, Linear MMSE receiver D-BLAST: an outage-optimal architecture, Coding across transmit antennas: D- BLAST. **06 Hrs**

<u>UNIT-6:</u>

Diversity–multiplexing tradeoff: Scalar Rayleigh channel, Parallel Rayleigh channel, MISO Rayleigh channel, 2x2 MIMO Rayleigh channel, ntxnr MIMO i.i.d. Rayleigh channel Universal code design for optimal diversity: multiplexing tradeoff - Universal code design for scalarchannels, parallel channels, MISO channels, MIMO channels Uplink with multiple receive antennas: Space-division multiple access ,SDMA capacity region MIMO uplink:SDMA with multiple transmit antennas, Downlink with multiple transmit antennas MIMO downlink. **06 Hrs**

Text books:

1	Fundamentals of Wireless Communications	2005	David Tse, Pramod	Viswanath	Cambridge University Press			
Refe	Reference books:							
1	Coding for Wireless Channels	2007	E. Biglieri,	Springer,				
2	MIMO Wireless Communications	2007	E. Biglieri, Andrea	Cambridge l	Jniversity Press			
3	WIRELESS COMMUNICATIONS	2005	Goldsmith	Cambridge l	Jniversity Press			

Etimelaumy.	Aler	June 2020	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards		
YCCE-CE-35						

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester				
	ET3922 –PE III: Sp	peech Processing		
Course Objective		Course Outcome		
The student should be ab	le to	The student will be able to		
		1) Identify digital speech productionmodel.		
1) Learn speech production	on mechanism.	2) Process speech using time and		
2) Understand time and fr	equency domain method	frequency domain method.		
for speech processing.		3) Analyze speech by linear predictive coding		
3) Learn linear predictiv	ve coding analysis of	method.		
speech.		4) Recognize speech and speaker.		
4) Understand various	speech and speaker			
recognition methods.				

UNIT-1: Speech Production

Human speech production mechanism, acoustic theory of speech production, Digital models for speech production. 06Hrs

UNIT-2: TIME DOMAIN MODELS FOR SPEECH PROCESSING

Introduction- Window considerations, Short time energy and average magnitude Short time average zero crossing rate ,Speech vs silence discrimination using Average energy and zero crossing, Pitch period estimation using parallel processing approach, The short time autocorrelation function, The short time average magnitude difference function, Pitch period estimation using the autocorrelation function.

06Hrs

UNIT-3: FREQUENCY DOMAIN METHOD FOR SPEECH PROCESSING

Short Time Fourier analysis: Fourier transform and linear filtering interpretations, Sampling rates -Spectrographic displays - Pitch and formant extraction - Analysis by Synthesis - Analysis synthesis systems: Phase vocoder, Channel Vocoder -Homomorphic speech analysis: Cepstral analysis of Speech, Formant and Pitch Estimation, HomomorphicVocoders. **07Hrs**

UNIT-4: LINEAR PREDICTIVE CODING (LPC) ANALYSIS

Basic principles of Linear Predictive Analysis: The Autocorrelation Method, The Covariance Method, Solution of Lpc Equations: Cholesky Decomposition, Solution for Covariance Method, Durbin's Recursive Solution for the AutoCorrelation Equations, Comparison between the Methods of Solution of the LPC Analysis Equations, Applications of LPC Parameters: Pitch Detection using LPC Parameters, Formant Analysis using LPC Parameters. **07Hrs**

Etinelaway.	Aler	June 2020	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards		
YCCE-CE-36						

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester ET3922 – PE III: Speech Processing

UNIT-5: Speaker Recognition:

Issues in speaker recognition, Speaker verification vs identification, Text-dependent vs text-independent speaker recognition, Vector quantization models applications in speaker recognition, and Gaussian mixture modeling for speaker and speech recognition 06Hrs

UNIT-6: Discrete and Continuous Hidden Markov modeling for isolated word and continuous speech recognition, DTW. 06Hrs

Text books:

	Discrete-time speech signal processing: Principles	5			
1	and Practice		2002	T.F Quatieri	Pearson
2	Digital Processing of Speech Signals		1978.	L R Rabiner,	Pearson
3.	Fundamentals of Speech Recognition		1993	L. Rabiner and B. Juang	Pearson
Refe	erence books:				
			Dou	uglas	IEEE
1	Speech Communication – Human and Machine	2000	O'S	haugnessy	Press

Etimelaury.	Aler	June 2020	1.00	Applicable for			
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards			
VCCE CE 27							

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

06Hrs

II Semester

ET3923 – PE III: Detection & Estimation Theory

UNIT-1:

Review of Probability Theory; Stochastic Processes; Representation of Stochastic Processes

UNIT-2:

Classical Detection and Estimation Theory Elementary hypothesis testing, Bayes rule, minimax rule, Neyman-Pearson rule; composite hypothesis testing. 06Hrs

<u>UNIT-3</u>

Detection of deterministic and random signals in Gaussian noise; Detection in non-Gaussian noise; Chernoff bound, asymptotic relative efficiency; sequential and distributed detection; **06Hrs**

<u>UNIT-4:</u>

<u>Estimation Theory:</u>estimation of parameters, Random parameters: Bayes Estimates, Estimation of , Nonrandom parameters, Properties ofEstimators, LMSE. 06Hrs

<u>UNIT-5</u>

Estimation of Waveforms:Linear MMSE Estimation of waveforms, Estimation of Stationary processes: Wiener filter, Estimation of Non-stationary processes: Kalman filter, Nonlinear estimation 06Hrs

<u>UNIT-6:</u>

Nonparametric detection, Locally optimal detection, Robust detection and estimation. Applications of detection and estimation Applications in diverse fields such as communications, system identification, adaptive filtering, pattern recognition. 06Hrs

Text	Text books:								
	Introduction to statistical Signal		Srinath,	Prentice Hall of					
1	processing with Applications	1989.	Rajasekaran&Viswanathan	India, New Delhi					
•	An Introduction to Signal	1001		2nd edition,					
2	Detection and	1994	H.V. Poor	Springer,					
	Estimation								
	Fundamental	1993,							
3	s of Statistical Signal	1998	S.M. Kay	Prentice Hall,					
	Processing:Vols.1&								
	2								
Refe	erence books:								
	Detection, Estimation and Modulation								
1	Theory	1968.	. E.L. Van Trees	Wiley, New York.					
	Detection of signals in noise and			John Wiley & Sons, New					
2	estimation	1985	Shanmugam and Breipohl	York					
-	Signal processing: Discrete Spectral		Mischa Schwartz and	Mc-Graw Hill Book					
3	analysis	1975	Leonard	Company					
v	Detection and	1010	Loonard	Company					
			Show						
	ESUMATION		Shaw						

Etinelaway.	- Her	June 2020	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards		

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester ET3924 – PE III: Real Time Operating System

Co Th	urse Objective e student should be able to	Course Outcome The student will be able to		
1)	Understand real time systems with reference	1)	Analyzethe various real time systems with	
	model		reference model	
2)	Know functional parameters, resources and	2)	Discuss the various functional parameters ,	
	scheduling.		resources and scheduling.	
3)	Study Faults and error containment.	3)	Detect multiple Faults and reduce error	
4)	Learn Memory management and I/O system		containment.	
	process management.	4)	Explore the various Memory management and	
			Input/Output system process management	

<u>UNIT-1:</u>

Overview Of Commands, File I/O. (Open, Create, Close, Lseek, Read, Write), Process Control (Fork, Vfork, Exit, Wait, Waitpid, Exec), Signals, Inter Process Communication (Pipes, FIFOs, Message Queues, Semaphores, Shared Memory). **06 Hrs**

UNIT-2:

Typical Real Time Application, Hard Vs Soft Real Time Systems, a Reference Model of Real Time Systems: Processors and Resources, Temporal Parameters of Real Time Workload, Periodic Task Model, Precedence Constraints and Data Dependency. **06 Hrs**

UNIT-3

Functional Parameters, Resource Parameters of Jobs and Parameters of Resources Clock Driven, Weighted Round Robin, Priority Driven, Dynamic Vs State Systems, Effective Release Times and Dead Lines, Offline Vs Online Scheduling. **06 Hrs**

<u>UNIT-4:</u>

Overview, Time Services and Scheduling Mechanisms, other Basic Operating System Function, Processor Reserves and Resource Kernel.Capabilities of Commercial Real Time Operating Systems.

06 Hrs

<u>UNIT-5</u> Introduction, Fault Causes, Types, Detection, Fault and Error Containment, Redundancy: Hardware, Software, Time. Integrated Failure Handling. **06 Hrs**

<u>UNIT-6:</u>

Memory Managements Task State Transition Diagram, Pre-Emptive Priority, Scheduling, Context Switches – Semaphore – Binary Mutex, Counting: Watch Dogs, I/O System Process Management, Scheduling, Interrupt Management, and Synchronization. **06 Hrs**

Finskanny.	- Call	June 2020	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester ET3924 – PE III: Real Time Operating System

Text books:

Reference books:						
2	Real Time Systems		C.M.Krishna, KANG G. Shin	Hill		
1	Real Time Systems	1999	Jane W.S. Liu	Pearson McGraw		

1 Advanced Unix Programming

Richard Stevens

Elinelaway.	de	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	
VCCE-CE-40					

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester ET3925 – PE IV: High Speed Networks

Course Objective	Course Outcome			
The student should be able to	The student will be able to			
 Understand different networks and network topologies 	1) analyze different networks and network topologies			
2) Know protocols used in high speed networks	2) Compare different protocols used in high			
3) Study Network design issues	speed networks			
4) Study optical sensors and Networks	3) Solve Network design issues			
,,	4) Compare optical sensors and Networks			

UNIT-1:

Network services, Network Elements, Basic Network Mechanism, High Performance Networks, Traffic Characterization and quality of service, Applications, Layered Architecture.**06 Hrs**

UNIT-2:

OSI and IP Models, Frame Relay, Internet Protocol, TCP and UDP, Performance of TCP/IP networks, Internet Success and Limitation**06 Hrs**

UNIT-3 :

Wireless Networks: Introduction, The wireless Channel, Link Level Design, Channel Access, Network Design06 Hrs

UNIT-4:

Control of Networks: Objectives and Methods of Control, Circuit-switched Networks, Datagram Networks, Mathematical Background of Control Networks.**06 Hrs**

UNIT-5:

Introduction to Adhoc Wireless Networks, Issues, Routing approaches, Table-Driven of Routing Protocols, On-Demand Routing Protocols, Hierarchical routing Protocols. Ad hoc network security- Requirements, Issues and Challenges**06 Hrs**

UNIT-6:

SONET, Optical Links, WDM Systems, Optical Cross-Connects, Optical LANs, Optical Paths and Networks06 Hrs

Text books:

		2005	J.F.Kurose& K.W. Ross	Pearson
1	Computer Networking			
	High-Performance Communication			
2	Networks		Jean WarlandPravinVaraiya	Elsevier
		2e		
_				

Reference books:

1 Adhoc Wireless Networks

2005 C.Siva Ram Murthy &B.S.Manoj

2005.

Pearson Education,

Etimelaumy.	Aler	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	
YCCF-CF-41					

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

Il Semester

ET3926 – PE IV: Wireless Sensor Networks

Course Objective	Course Outcome
The student should be able to	The student will be able to
1) To Understand the basic WSN technology and supporting protocols, with emphasis placed on standardization basic sensor systems and provide a survey of sensor	 Understand and explain common wireless sensor node architectures. Carry out simple analysis and planning of WSNs
c) Understand the medium access control	 Demonstrate knowledge of MAC protocols developed for WSN.
protocols and address physical layer issues 3) Learn key routing protocols for sensor	 Demonstrate knowledge of routing protocols developed for WSN.
networks and main design issues	5) Understand and explain mobile data-centric
4) Learn transport layer protocols for sensor	networking principles.
networks, and design requirements	6) Be familiar with WSN standards.
5) Understand the Sensor management, sensor network middleware, operating systems.	

<u>UNIT-1:</u>

Introduction to sensors- Definition of sensor & its difference from transducer, Classification of sensors, application of sensors in various fields. Architecture-single node architecture-hardware components, energy consumption of sensor nodes, operating system and execution environments

06Hrs

UNIT-2:

Network architecture-optimization goal and figure of merit-design principles for WSN, service interface of WSN, Gateway concept challenges of WSN, comparison with other network.**06Hrs UNIT-3**

Wireless channel and communication fundamental, physical layer and transceiver design consideration in WSN. **06Hrs**

<u>UNIT-4:</u>

MAC Protocols-Fundamental of MAC Protocol, low duty cycle protocol and wakeup concepts, schedule based protocols , Link layer protocols, routing protocols **06Hrs**

<u>UNIT-5</u>

Naming and addressing, Time synchronization, Properties of Localization and positioning procedures, single hop localization, positioning in multihop environments, and impact of anchor placement.**06Hrs UNIT-6**:

Data centric routing, Data aggregation, Data centric storage, Topology control-controlling topology in a flat network, Hirarical network by dominating set, Hierarchical network by clustering, combining Hierarchical topologies and power control.06Hrs

Finelaury.	- tel	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	
YCCE-CE-42					

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester ET3926 – PE IV: Wireless Sensor Networks

Text books:

1	Protocols and architecture for Wireless Sensor Networks	2007	Holger Karl, Andreas Willig,	Wiley
2	Handbook of Algorithms for Wireless Networking and Mobile Computing	2006	AzzedineBoukerche	Chapman & Hall/CRC, 2006
Refe	rence books:			
1	Wireless Sensor Network Designs,	2003	Anna Hac	Wiley
	Wireless Sensor Networks : A		NirupamaBulusu and	
2	systems perspective	2005	Sanjay Jha	ArtechHouse,August 2005.
_	Wireless Sensor Networks :			
3	Architecture and Protocols	2003	Jr., Edgar H. Callaway,	Auerbach, 2003.
			C.S. Raghavendra,	
4	Wireless Sensor Networks	2005	Krishna N Sivalingam and TaiebZnati	1. Springer,

Etimoloumy.	Aler	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	
VCCE CE 42					

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester

ET3927 – PE IV: Micro Electro Mechanical Systems

UNIT-1:

Intrinsic Characteristic of MEMS :- Energy Domains & Transducers. Sensors & Actuators. Introduction to Micro fabrication- silicon based MEMS processes. New Materials- Review of Electrical and Mechanical concepts in MEMS. Semiconductor devices- Stress & Strain analysis- Flexural beam bending, Torsional deflection**06Hrs**

<u>UNIT-2:</u>

Electrostatic sensors- Parallel Plate capacitors, Applications, Interdigital Finger capacitor,Com drive devices, Thermal sensing and Actuation, Thermal Expansion, Thermal couples, Thermal resistors, Applications, Magnetic Actuators, Micro magnetic Components, Case studies of MEMS in magnetic actuators**06Hrs UNIT-3**

Piezoresistive sensors, Piezoresistive sensor materials, Stress analysis of mechanical elements, Applications to Inertia, Pressure, Acoustic, Tactile and Flow sensors, Piezoelectric sensors and actuators, Piezoelectric effects, Piezoelectric materials.**06Hrs**

<u>UNIT-4:</u>

Silicon Anisotropic Wet Etching, Dry Etching of Silicon, Plasma Etching, Deep reaction Ion Etching (DRIE), Isotropic Wet Etching, Gas phase Etchants-Case studies, Basic surface micromachining processes, Structural and sacrificial materials, Acceleration of sacrificial Etch, Striction and Anistriction methods, Assembly of 3D MEMS, Foundry process**06Hrs**

<u>UNIT-5</u>

Polymers in MEMS ,Polimide, SU-8, Liquid Crystal Polymer(LCP), PDMS, PMMA, Parylene,Flurocarbon, Application to acceleration, Pressure, Flow and Tactile sensors **06Hrs**

<u>UNIT-6:</u>

Optical MEMS, Lensens and Mirrors, Actuators for Active Optical MEMS.06Hrs

Text books:

1	Foundations of MEMS	2006	Chang Liu,	Pearson Education
Refe	erence books:			
1	An Introduction to Micro electro mechanical system design	2000	NadimMaluf	Artech House
2	The MEMS Handbook MEMS & Micro systems Design	2000	Mohames Gad-el-Hak	CRDC press Baco Raton Tata Mcgraw Hill.
3	and Manufacture	2002	Tai Ran Hsu,	New Delhi.

Etimelaury.	April	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	
VCCE-CE-44					

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech. SoE & Syllabi 2020-21

Communication Engineering

II Semester ET3928 – Seminar

Со	urse Objective	Course Outcome		
Th	e student should be able to	Th	e student will be able to	
1)	Gain profound knowledge about English language.	1) 2)	Write effectively in English. Analyze logically and critically on different issues.	
2)	Learn logical and critical reasoning skills	3)	Solve quantitative problems effectively.	
3)	Know mathematical formulae for quantitative reasoning	4)	Apply fundamentals of Electronics and	
4)	Acquire sound technical knowledge		Telecommunication for practical applications.	

Etinelaway.	Met -	June 2020	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

III Semester ET3939 - Project Phase-I

COURSE OBJECTIVE			COURSE OUTCOMES			
1.	To provide the students the academic environment	1.	An ability to understand the advances in structural			
	to carry out literature survey of advanced topics in		engineering.			
	structural engineering	2.	An ability to understand the use of modern tools.			
2.	To motivate the students to use the modern tools	3.	An ability to work independently and in a team for			
	and software.		effective communication			
3.	To provide the students the understanding of various aspects like effective communication skills, working independently and in a team and the importance of lifelong learning etc. to carry out project.	4.	An ability to understand the importance of lifelong learning.			
PO	PO Mapped : 1,2,3,4,5,6,					

Contents:

- 1. Literature review on current topic related to the structural engineering.
- 2. Preparation and presentation of progress seminars on topic selected for dissertation.
- 3. Submission of project report including introduction, literature review, objective and scope of investigation and pilot studies carried out during the semester.

Eurolaumy.	Aler	June 2020	1.00	Applicable for				
Chairperson	Chairperson Dean (Acad. Matters)	Date of Release	Version	AY 2020-21 Onwards				

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech. SoE & Syllabi 2020-21

Communication Engineering

IV Semester ET3940 - Project Phase-II

COURSE OBJECTIVE			COURSE OUTCOMES					
1.	To provide the students the academic environment to carry out literature survey of advanced topics in structural engineering	1. 2	An ability to understand the advances in structural engineering. An ability to solve real world structural					
2.	To provide the students the understanding of real world structural engineering problems and their solution.	<u>-</u> . 3.	engineering problems. An ability to understand the importance of					
3.	To motivate the students to use the modern tools and software.	4.	lifelong learning and the use of modern tools. An ability to work independently and in a team					
4.	To provide the students the understanding of various aspects like effective communication skills, working independently and in a team and the importance of lifelong learning etc. to carry out project.		for effective communication.					
PO Mapped : 1,2,3,4,5,6,								

Contents:

- 1. The of detailed study of a work including collection and analysis of data, determining solution, design, scientific research on topic selected for dissertation.
- Preparation and presentation of progress seminars on topic selected for dissertation. 2.
- 3. Submission of project report on the entire studies carried out during the semester

Etinglanny.	- tell	June 2020	1.00	Applicable for				
Chairperson	Chairperson Dean (Acad. Matters)		Version	AY 2020-21 Onwards				