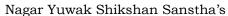

Nagar Yuwak Shikshan Sanstha's


Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Hingna Road, Wanadongri, Nagpur - 441 110

Post Graduation (M. Tech.) SoE & Syllabus 2014 1 to 4 Semester **Computer Science Engineering**

Update on May 2017

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) PG SoE and Syllabus 2014

Computer Science Engineering

				Con	tact	Hours			% Weig	htage		505
SI. No.	Course Code	Course Title	L	Т	Р	Total Contact Hrs.	Credits	MSE - I	MSE - II	ТА	ESE	ESE Duration Hrs.
I SEI	MESTER											
1	CSE1901	High Performance Computer Architecture	3	0	0	3	3	15	15	10	60	3
2	CSE1902	Real Time Systems	3	0	0	3	3	15	15	10	60	3
3	CSE1903	Network Security & Cryptography	3	0	0	3	3	15	15	10	60	3
4	CSE1904	Lab: Network Security & Cryptography	0	0	2	2	1			40	60	2
5	CSE1905	Algorithm Design Techniques	3	0	0	3	3	15	15	10	60	3
6	CSE1906	Lab: Algorithm Design Techniques	0	0	2	2	1			40	60	2
	Profession	nal Elective-I										
	CSE1907	Advanced Digital Image Processing										
7	CSE1908	Ethical Hacking	3	0	0	3	3	15	15	10	60	3
	CSE1909	Machine Learning										
	CSE1910	Grid and Cloud Computing										
		Total	15	0	4	19	17					
II SE	MESTER											
1	CSE1911	Data Mining	3	0	0	3	3	15	15	10	60	3
2	CSE1912	Distributed Systems	3	0	0	3	3	15	15	10	60	3
3	CSE1913	Optimizing Compilers	3	0	0	3	3	15	15	10	60	3
4	CSE1914	Lab: Optimizing Compilers	0	0	2	2	1			40	60	2
5	CSE1915	Software Architecture	3	0	0	3	3	15	15	10	60	3
6	CSE1916	Lab: Software Architecture	0	0	2	2	1			40	60	2
7	CSE1917	Seminar	0	0	2	2	1			100		1
	Profession	nal Elective-II]									
	CSE1918	Soft Computing Techniques										

Chairperson	BA: A	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antopat	Version	1.01	AY 2017-18 Onwards

21

18

0

15 0 6 15

10

60

3

15

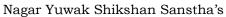
Techniques

Network

Systems Total

Data Warehousing

Information Retrieval


Wireless Sensor

CSE1919

CSE1920

CSE1921

8

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) PG SoE and Syllabus 2014

Computer Science Engineering

				Con	tact	Hours			% Weig	htage		F0F
SI. No.	Course Code	Course Title	L	т	Р	Total Contact Hrs.	Credits	MSE - I	MSE - II	ТА	ESE	ESE Duration Hrs.
III SE	EMESTER											
	Profession	nal Elective- III										
1	CSE1923	Computer Vision				3	3	15	15	10		3
	CSE1924	Natural Language Processing	3	0	0						60	
	CSE1925	Optimization Techniques										
	CSE1926	Database Security										
	Profession	nal Elective-IV										
	CSE1927	Cyber Forensics										
	CSE1928	Pattern Recognition										
2	CSE1929	Algorithms for Bioinformatics	3	0	0	3	3	15	15	10	60	3
	CSE1930	Semantic Web and Social Networks										
3	CSE1922	Project Phase – I	0	0	16	16	8			100		

IV SEMESTER

Total

	•									
1	CSE1931	Project Phase - II	0	0	24	24	12	40	60	
			0	0	24	24	12			
	Grand Total of credits									

Chairperson	BAIL	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antopol	Version	1.01	AY 2017-18 Onwards

Nagar Yuwak Shikshan Sanstha's

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

1 SEMESTER

CSE1901	High Perform	nance Computer	Architectures	L=3	T=0	P=0	Credits=3
Evaluation Scheme	MSE-I	MSE-II	TA	ESE	Total		ESE Duration
Odneme	15	15	10	60	100		3hrs

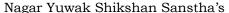
Unit I: The state of computing, Classification of parallel computers, Multiprocessors and multicomputer, Multivector and SIMD computers.

Unit II: Conditions of parallelism, Data and resource Dependences, Hardware and software parallelism, Program partitioning and scheduling, Grain Size and latency, Program flow mechanisms, Control flow versus dataflow, Dataflow Architecture, Demand driven mechanisms, Comparisons of flow mechanisms

Unit III: Linear pipeline processor, nonlinear pipeline processor, Instruction pipeline Design, Mechanisms for instruction pipelining, Dynamic instruction scheduling, Branch Handling techniques, branch prediction, Arithmetic Pipeline Design, Computer arithmetic principles, Static Arithmetic pipeline, Multifunctional arithmetic pipelines

Unit IV: Cache basics & cache performance, reducing miss rate and miss penalty, multilevel cache hierarchies, cache coherence protocols, memory based directory protocols, cache based directory protocols.

Unit V: Advanced processor technology, Instruction-set Architectures, CISC Scalar Processors, RISC Scalar Processors, Superscalar Processors, VLIW Architectures, Vector and Symbolic processors.


Unit VI: Symmetric shared memory architectures, distributed shared memory architectures, models of memory consistency. Multicore and Many core computing, GPU programming: OpenCL, CUDA

Text Books:

- 1. Kai Hwang, "Advanced computer architecture", TMH publications
- 2.D. A. Patterson and, J. L. Hennessey, "Computer organization and design", Morgan Kaufmann

- 1.J. P. Hayes, "Computer Architecture and organization", MGH
- 2. Ryojitsuchiyama, Takashi Nakamura, Takurolizuka, Akihiro Asahara, satoshi Miki "OpenCL Programming Book", Kindle Edition
- 3. Edward Kandrot, Jason Sanders, "CUDA by Example, An Introduction to General-Purpose GPU Programming" Prentice Hall Publications.
- 4. V. Rajaranam & C. S. R. Murthy, "Parallel computer", PHI
- 5.R. K. Ghose, Rajan Moona & Phalguni Gupta, "Foundation of Parallel Processing", Narosa Publications
- 6. Kai Hwang and Zu, "Scalable Parallel Computers Architecture", MGH.
- 7.M. J. Flynn, "Computer Architecture, Pipelined and Parallel Processor Design", Narosa Publishing.
- 8. D. A. Patterson, J. L. Hennessy, "Computer Architecture: Aquantitative approach", Morgan Kauffmann
- 9. Cuda toolkit documentation from NVIDIA and developer.nvidia.com/cuda-zone

Chairperson	BA: A	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antopal	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

1 SEMESTER

CSE1902	Real Time Systems					T=0	P=0	Credits=3
Evaluation Scheme	MSE-I	MSE-II TA ESE Total					ı	ESE Duration
	15	15	10		60	100		3hrs

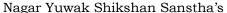
Unit I: Introduction to real-time systems, Example real-time applications, Hard vs. soft real time, Reference model, Classic uniprocessor scheduling, Static scheduling, Dynamic scheduling, Cyclic executives

Unit II: Dynamic-priority scheduling: Optimality of EDF and LLF, Utilization-based schedulability test for EDF, Non preemptive EDF, Static-priority scheduling: Optimality of RM and DM, Utilization-based schedulability test for RM, Demand-based scheduling: conditions for static-priority systems. Dealing with complexities arising in real systems: Practical considerations, Timing analysis.

Unit III: Preemptive systems: Dynamic-priority systems, Static-priority systems, Non preemptive systems, Dynamic-priority systems, Static-priority systems

Unit IV: Independent Task Models, Resource sharing, Priority inheritance and priority ceiling protocols, stack resource protocol, Lock-free approach Global multiprocessor schedulability analysis, Hard real-time analysis for global EDF, Soft real-time analysis for global EDF.

Unit V: Synchronization in multiprocessors and distributed systems, Multiprocessor locking protocols, End-to-end scheduling. Mixing real-time and non-real-time, Deferrable servers, Sporadic servers, Constant utilization and total bandwidth servers fairness and starvation


Unit VI: A look at some real systems, Basic operating-system functions needed for real-time computing, Survey of commercial real-time and non-real-time operating systems.

Text Books:

- 1. Hermann Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications, Springer
- 2. Jane W. S. Liu: Real-Time Systems, Prentice Hall,

- 1. Philip A. Laplante, Seppo J. Ovaska: Real-Time Systems Design and Analysis: Tools for Practitioner
- 2. C.M. Krishna, Kang G. Shin, "Real Time Systems", McGraw Hill International Edition
- 3. Raymond J.A.Bhur, Donald L.Bailey, "An Introduction to Real Time Systems", PHI

Chairperson	BAIL	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antogat	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

1 SEMESTER-

CSE1903 Netw	work Security & Cryptography	L=3	T=0	P=0	Credits=3
--------------	------------------------------	-----	-----	-----	-----------

Evaluation	MSE-I	MSE-II	TA	ESE	Total	ESE Duration
Scheme	15	15	10	60	100	3hrs

Unit I: Introduction: Security Trends, Security Goals, Security Attacks, Security Services, Security Mechanisms, Relation between Services and Mechanisms, Network Security model, Techniques.

Unit II: Encryption Techniques: Traditional Symmetric Key Ciphers: Substitution, Transposition, Stream and Block Ciphers, Modern Symmetric Key Ciphers: Introduction, Data Encryption Standard (DES), AES. Symmetric Key Cryptography: RSA, Rabin, ElGamal Cryptosystem.

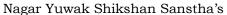
Unit III: Integrity, Authentication: Message Integrity, Message Authentication, Cryptographic Hash Functions, Digital signature, Entity Authentication.

Unit IV: Key Management: KDC, Kerberos, symmetric Key Management: Diffie-Hellman key management, Public Key Distribution: Trusted Center, Certification Authority, X.509, Public Key Infrastructure (PKI).

Unit V: Security at Application Layer: Pretty Good Privacy (PGP), S/MIME.

Security at Transport Layer: Secure Socket Layer (SSL), Transport Layer Security (TLS).

Security at Network Layer: IPsec.


Unit VI: System Security: Intruders, Intrusion detection, Password Management, Malicious Software, Viruses and related threats, Virus Counter measures, Distributed Denial of Service Attacks, Firewalls, Firewall design principles, Trusted systems.

Text Books:

- 1. Behrouz A. Forouzan, "Cryptography and Network Security", Tata McGraw-Hill
- 2. William Stalling, "Cryptography and Network Security", Fourth Ed., Prentice Hall
- 3. Atul Kahate, "Cryptography and Network Security", Tata McGraw Hill

Chairperson	BAIN	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antopah	Version	1.01	AY 2017-18 Onwards

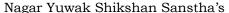
YCCE-CT-CSE-3

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

1 SEMESTER


CSE1904	Lab : Network Security and Cryptography	L=0	T=0	P=2	Credits=1
---------	---	-----	-----	-----	-----------

Evaluation	Continuous Evaluation		Total	ESE Duration
Scheme	40	60	100	

List of Practical's

- 1. Study of various types of network security attacks, attack detection and defense mechanism.
- 2. Use of different network attacking, traffic monitoring, detection and defense tools in Linux/ Window
- 3. Report on YCCE Campus wide networking and its performance monitoring.
- 4. Installation and configuration of Apache Web Server on Linux/Windows Platform.
- 5. Installation and configuration of Apache Tomcat Application Server on Linux/Windows Platform.

Chairperson	BAIL	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antogat	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

1 SEMESTER

CSE1905 Algorithm Design Techniques			L=3	T=0	P=0	Credits=3	
Evaluation	MSE-I	MSE-II	TA	ESE	Tot	tal	ESE Duration
Scheme	15	15	10	60	10	0	3hrs

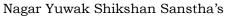
Unit I: Algorithmic analysis: Analyzing control structures, Solving recurrences, Review of data structures. **Greedy algorithms**: General characteristics, Graphs algorithms, Scheduling.

Unit II: Divide and conquer algorithms: General template, Searching, Sorting, Matrix multiplication, Exponentiation and its application in cryptography. **Dynamic programming**: Principle of optimality, Shortest paths, Chained matrix multiplication, Approaches using recursion, Memory functions.

Unit III: Linear programming: Formulating problems as linear programs, The simplex algorithm, Duality.

Unit IV: Probabilistic algorithms: Introduction, Pseudorandom generation, Numerical probabilistic algorithms, Monte Carlo algorithms, Las Vegas algorithms. **Heuristic algorithms and Approximate algorithms**: Heuristic algorithms, NP-hard approximation problems

Unit V: Parallel algorithms: Basic techniques, Parallel evaluation of expressions, Parallel sorting networks, parallel sorting, Distributed computation.


Unit VI: Computational complexity: Introduction, Linear reductions, Introduction to NP-completeness.

Text Books:

1. T. H. Cormen, C. E. Leiserson, R.L. Rivest, C. Stein, "Introduction to Algorithms", PHI.

- 1. G. Brassard, P. Bratley, "Fundamentals of Algorithmics", PHI
- 2. A.V. Aho, J. E. Hopcroft, J.D. Ulman, "The Design & Analysis of Computer Algorithms", Addison Wesley.
- 3. Horowitz E., Sahni S, Rajasekharan S., "Fundamentals of computer algorithms", University press

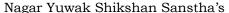
Chairperson	BAIL	Date of Release	May 2017	Applicable for	
Dean (Acad. Matters)	Antogat	Version	1.01	AY 2017-18 Onwards	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

1 SEMESTER


CSE1906 Lab : Algorithm Design Techniques	L=0	T=0	P=2	Credits=1
---	-----	-----	-----	-----------

Lvaidation	Continuous Evaluation	ESE	Total	ESE Duration
Scheme	40	60	100	

List of Practical's

- 1. Write an algorithm and program for fractional knapsack problem using greedy strategy.
- 2. Implement Strassen's algorithm using divide and conquer strategy.
- 3. Write an algorithm and program for 0-1 knapsack problem using dynamic programming strategy
- 4. Write an algorithm and program to demonstrate the Simplex Method.
- 5. Write an algorithm and program to implement randomized quicksort algorithm.
- 6. Study of NESL: A Parallel Programming Language
- 7. Study of Heuristic algorithm for TSP
- 8. Study of Approximation algorithm for TSP

Chairperson	BAIL	Date of Release	May 2017	Applicable for	
Dean (Acad. Matters)	Antogat	Version	1.01	AY 2017-18 Onwards	

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

1 SEMESTER

CSE1907	Advanced Digital Image Processing			L=3	T=0	P=0	Credits=3
Evaluation	MSE-I	MSE-II	TA	ESE	Тс	otal	ESE Duration
Scheme	15	15	10	60	10	00	3hrs

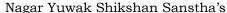
Unit I: Overview of Digital Image Processing and Image Enhancement: A Simple Image Model, Sampling and Quantization, Basic Relationship Between Pixel, Basic gray level Transformation, Histogram Equalization, Histogram Processing, Local Enhancement, Image Subtraction, Image Averaging, Basics of Spatial Filtering, Smoothing Spatial Filtering, Sharpening Spatial Filters, Discrete Fourier Transformation, Fast Fourier Transformation, Fourier Properties, 2DFT, Inverse Fourier Transform, Filtering in Frequency Domain, Correspondence between Filtering in the Spatial and Frequency Domain, Smoothing Frequency Domain Filters, Sharpening Frequency Domain Filters, Homographic Filtering.

Unit II: Image Segmentation: Fundamentals, Point, line and edge detection, thresholding, Region Oriented Segmentation, Motion Based Segmentation.

Unit III: Morphing, Representation and Description: Introduction, Basic Morphological Algorithm, Chain Code, Polygonal Approximation, Signatures, Boundary Segments, Skeleton of a region, Boundary Descriptors, Shape Numbers, Fourier Descriptors, Regional Descriptors, Simple Descriptors, Topological Descriptors.

Unit IV: Model of the Image Degradation/Restoration Process: Noise Models, Restoration in the presence of Noise only-Spatial Filtering, Periodic Noise reduction by frequency domain filtering, Linear Position-Invariant Degradations, Estimation of Degradation Function, Inverse Filtering, Wiener Filtering, Constrained Least Square Filtering.

Unit V: Wavelets: Image Pyramids, Haar Transform, Multiresolution Expansions, Wavelet Transforms in1D, Fast wavelet Transform, wavelet packets.


Unit VI: Image Compression: Fundamentals of Image compression, coding redundancy, spatial and temporal redundancy, Irrelevant Information, Measuring Image Information, Fidelity criteria, Image compression models, compression standards, Basic compression methods, Huffman coding, colomb coding, arithmetic coding, LZW coding, runlength coding, Symbol based coding, Block transform coding, predictive coding.

Text Books:

- 1. Rafael C. Gonzalez & Richard E. Woods, "Digital Image Processing", Pearson Education.
- 2. A. K. Jain, "Fundamental of Digital Image Processing", PHI.

- Rosefield Kak, "Digital Image Processing".
- 2. W. K. Pratt, "Digital Image Processing".

Chairperson	BAIL	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antogat	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

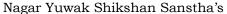
Computer Science Engineering

1 SEMESTER

CSE1908	Ethical Hacking			L=3	T=0	P=0	Credits=3
Evaluation Scheme	MSE-I	MSE-II	TA	ESE	To	otal	ESE Duration
	15	15	10	60	1	00	3hrs

Unit I: Introduction to Ethical Hacking, Ethics, and Legality: Ethical Hacking Terminology, Types, Phases and Stages of Ethical Hacking: Passive and Active Reconnaissance, Scanning, Gaining Access, Maintaining Access, Covering Tracks, Hacktivism, Hacker Classes, Skills Required to Become an Ethical Hacker, Vulnerability Research, Ways to Conduct Ethical Hacking, Creating a Security Evaluation Plan, Types of Ethical Hacks, Testing Types, Ethical Hacking Report

Footprinting and Social Engineering: Footprinting, Information Gathering Methodology, Competitive Intelligence, DNS Enumeration, Who is and ARIN Lookups, Types of DNS Records, Traceroute, E-Mail Tracking, Web Spiders, Social Engineering, Types of Attacks: Insider Attacks, Identity Theft, Phishing Attacks, Online Scams, URL Obfuscation, Social-Engineering Countermeasures.


Unit II: Scanning and Enumeration: Types of Scanning, CEH Scanning Methodology, Ping Sweep Techniques, Nmap Command Switches, SYN, Stealth, XMAS, NULL, IDLE, and FIN Scans, TCP Communication Flag Types, War-Dialing Techniques, Banner Grabbing and OS Fingerprinting Techniques, Proxy Servers, Anonymizers, HTTP Tunneling Techniques, IP Spoofing Techniques, Enumeration, Null Sessions, SNMP Enumeration & Steps Involved

Unit III: System Hacking: Password-Cracking Techniques, LAN Manager Hash Cracking Windows 2000 Passwords, Redirecting the SMB Logon to the Attacker SMB Redirection, SMB Relay MITM Attacks and Countermeasures, NetBIOS, DoS Attacks, Password-Cracking Countermeasures, Types of Passwords Passive Online Attacks, Active Online Attacks, Offline Attacks, Non electronic Attacks, Keyloggers and Spyware Technologies Escalating Privileges, Buffer Overflows, Planting Root kits on XP Machines, Rootkit Embedded TCP/IP Stack Rootkit Countermeasures, Hiding Files, NTFS File Streaming NTFS Stream Countermeasures, Steganography Technologies, How to Cover Your Tracks and Erase Evidence, Disabling Auditing, Clearing the Event Log

Unit IV: Trojans, Backdoors, Viruses, and Worms: Trojans and Backdoors, Overt and Covert Channels, Types of Trojans, Reverse-Connecting Trojans, Netcat Trojan ,Wrapping, Trojan Construction Kit and Trojan Makers, Countermeasure Techniques, Trojan-Evading Techniques, System File Verification, Viruses and Worms, Types of Viruses, Antivirus Evasion Techniques, Virus Detection Methods Sniffers: Protocols Susceptible to Sniffing, Active and Passive Sniffing, ARP Poisoning, Ethereal Capture and Display Filters, MAC Flooding, DNS Spoofing Techniques, Sniffing Countermeasures

Denial of Service and Session Hijacking: Denial of Service, Types of DoS Attacks, DDoS Attacks DoS/DDoS Countermeasures, Session Hijacking, Spoofing vs. Hijacking, Session Hijacking, Sequence Prediction, Prevention of Session Hijacking

Chairperson	BANA	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antogan	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

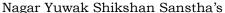
1 SEMESTER

CSE1908		Ethical Hacl	king	L=3	T=0	P=0	Credits=3
Evaluation Scheme	MSE-I	MSE-II	TA	ESE	To	otal	ESE Duration
	15	15	10	60	1	00	3hrs

Unit V: Hacking Web Servers, Web Application Vulnerabilities, and Web-Based Password Cracking: Web Server Vulnerabilities, Attacks against Web Servers, IIS Unicode Exploits, Patch Management Techniques, Web Server Hardening Methods, Web Application Vulnerabilities, Objectives, Anatomy of an Attack, Web Application Threats, Google Hacking, Web Application Countermeasures, Web-Based Password Cracking Techniques, Authentication Types, Password Cracker, Password Attacks, Password-Cracking Countermeasures

SQL Injection and Buffer Overflows: SQL Injection, SQL Server, Vulnerabilities, SQL Injection Countermeasures, Buffer Overflows, Types and Methods of Detection, Stack-Based Buffer Overflows, Mutation Techniques

Unit VI: Linux Hacking: Linux Basics, Compile a Linux Kernel, GCC Compilation Commands, Install Linux Kernel Modules, Linux Hardening Methods


Penetration Testing Methodologies: Security Assessments, Penetration Testing Methodologies, Penetration Testing Steps, Pen-Test Legal Framework, Automated Penetration Testing Tools, Pen-Test Deliverables

Text Books:

1. CEH Certified Ethical Hacker study Guide V6, Wiley Publication

- 1. Rich Annings, Himanshu Dwivedi, Zane Lackey, "Hacking Exposed Web 2.0", Tata McGraw Hill
- 2. Michael T, "Ethical Hacking & Network Defense", Simpson
- 3. Joel Scambray, cissp, Stuart Mcclure, Cissp, "Hacking Exposed Windows", 3rd Edition, Tata McGraw Hill
- 4. Joel Scambray Stuart Mcclure, "Hacking Exposed Window server 2003", Tata McGraw Hill

Chairperson	BAIL	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antogat	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

1 SEMESTER

		CSE1909	Machine Learning	L=3	T=0	P=0	Credits=3
--	--	---------	------------------	-----	-----	-----	-----------

Evaluation	MSE-I	MSE-II	TA	ESE	Total	ESE Duration
Scheme	15	15	10	60	100	3hrs

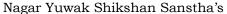
Unit I: Introduction - Well-posed learning problems, Designing a learning system, Perspectives and issues in machine learning Concept learning and the general to specific ordering – Introduction, A concept learning task, Concept learning as search, Find-S: finding a maximally specific hypothesis, Version spaces and the candidate elimination algorithm, Remarks on version spaces and candidate elimination, Inductive bias

Unit II: Decision Tree learning – Introduction, Decision tree representation, Appropriate problems for decision tree learning, The basic decision tree learning algorithm, Hypothesis space search indecision tree learning, Inductive bias in decision tree learning, Issues in decision tree learning

Artificial Neural Networks – Introduction, Neural network representation, Appropriate problems for neural network learning, Perceptions, Multilayer networks and the back propagation algorithm, Remarks on the back propagation algorithm, An illustrative example face recognition Advanced topics in artificial neural networks

Evaluation Hypotheses – Motivation, Estimation hypothesis accuracy, Basics of sampling theory, A general approach for deriving confidence intervals, Difference in error of two hypotheses, Comparing learning algorithms

Unit III: Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum likelihood and least squared error hypotheses, Maximum likelihood hypotheses for predicting probabilities, Minimum description length principle, Bayes optimal classifier, Gibs algorithm, NaïveBayes classifier, An example learning to classify text, Bayesian belief networks The EM algorithm


Unit IV: Computational learning theory – Introduction, Probability learning an approximately correct hypothesis, Sample complexity for Finite Hypothesis Space, Sample Complexity for infinite Hypothesis Spaces, The mistake bound model of learning

Instance-Based Learning- Introduction, k -Nearest Neighbour Learning, Locally Weighted Regression, Radial Basis Functions, Case-Based Reasoning, Remarks on Lazy and Eager Learning

Genetic Algorithms – Motivation, Genetic Algorithms, An illustrative Example, Hypothesis Space Search, Genetic Programming, Models of Evolution and Learning, Parallelizing Genetic Algorithms

Unit V: Learning Sets of Rules – Introduction, Sequential Covering Algorithms, Learning Rule Sets: Summary, Learning First Order Rules, Learning Sets of First Order Rules: FOIL, Induction as Inverted Deduction, Inverting Resolution

Chairperson	BAIL	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antogat	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

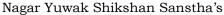
1 SEMESTER

CSE1909	Machine Learning	L=3	T=0	P=0	Credits=3

Evaluation	MSE-I	MSE-II	TA	ESE	Total	ESE Duration
Scheme	15	15	10	60	100	3hrs

Analytical Learning - Introduction, Learning with Perfect Domain Theories: Prolog-EBG Remarks on Explanation-Based Learning, Explanation-Based Learning of Search Control Knowledge

Unit VI: Combining Inductive and Analytical Learning – Motivation, Inductive-Analytical Approaches to Learning, Using Prior Knowledge to Initialize the Hypothesis, Using Prior Knowledge to Alter the Search Objective, Using Prior Knowledge to Augment Search Operators,


Reinforcement Learning – Introduction, The Learning Task, Q Learning, Non-Deterministic, Rewards and Actions, Temporal Difference Learning, Generalizing from Examples, Relationship to Dynamic Programming

Text Books:

- 1. Tom M. Mitchell, "Machine Learning", MGH
- 2. Stephen Marsland, "Machine Learning: An Algorithmic Perspective", Taylor & Francis (CRC)

- 1. William W Hsieh, "Machine Learning Methods in the Environmental Sciences, Neural Networks", Cambridge Univ Press.
- 2. Richard O. Duda, Peter E. Hart and David G. Stork, "Pattern Classification", John Wiley & Sons

Chairperson	BANA	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antogan	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

1 SEMESTER

CSETSTO	Gi	ia ana Cioua Co	mputing	L=3	1=0	P=U	Credits=3
					•	•	
Evaluation	MSE-I	MSE-II	TA	ESE	То	tal	ESE Duration

Evaluation
SchemeMSE-IMSE-IITAESETotalESE Duration151510601003hrs

Unit I: System models for advanced computing –clusters of cooperative computing, grid computing and cloud computing; software systems for advanced computing-service oriented software and parallel and distributed programming models with introductory details, Features of grid and cloud platform.

Unit II: Cloud Computing services models and features in Saas, Paas and Iaas. Service oriented architecture and web services; Features of cloud computing architectures and simple case studies.

Unit III: Virtualization- Characteristic features, Taxonomy Hypervisor, Virtualization and Cloud Computing, Pros and Cons of Cloud Computing, Technology Examples/Case Studies.

Unit IV: Cloud programming Environmental- Map Reduce Hadoop Library from Apache, Open Source Cloud Software Systems –Eucalyptus.

Unit V: Grid Architecture and Service modeling, Grid resource management, Grid Application trends.

Unit VI: Case Studies

Text Books:

- 1. Kaittwang Geoffrey C.Fox and Jack J Dongrra, "Distributed and Cloud Computing, Elsevier India
- 2. Raj Kumar Buyya, Christian Vecchiola and S.TanuraiSelvi, "Mastering Cloud Computing", TMH,

- 1. John W. Ritting House and James F Ramsome, "Cloud Computing", CRC Press
- 2. Gautam Shroff, "Enterprise Cloud Computing", Cambridge University Press

Chairperson	BA:A	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antopal	Version	1.01	AY 2017-18 Onwards

Nagar Yuwak Shikshan Sanstha's

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

2 SEMESTER

Ī	CSE1911	Data Mining	L=3	T=0	P=0	Credits=3

Evaluation	MSE-I	MSE-II	TA	ESE	Total	ESE Duration
Scheme	15	15	10	60	100	3hrs

Unit I:

Introduction to data mining, Process of data mining, Data Mining Functionalities, Classification of Data Mining systems, Data Mining Task primitives, Major issues in Data Mining, Applications of Data Mining

Unit II: Classification and Clustering Classification: Introduction, decision tree, building a decision tree- the tree induction algorithm, split algorithm based on information theory, gini index, over fitting and pruning, decision tree rules, naïve Bayes method.

Clustering: Types of data in cluster analysis, Categorization of major clustering methods: Partitioning methods, Hierarchical methods, Applications of clustering.

Unit III: Mining Frequent Patterns and Association Rules: Market Basket Analysis, Frequent Item sets and Association rules, A Priori Algorithm, Improving the efficiency of A priori, FP- growth Algorithm.

Unit IV: Social Media Analytics: Social network analysis, Representation of social data, Social media analysis, Tools to collect and analyze data of social media based on NODEXL.

Unit V: Visualization and Prediction Visualization: Motivation for visualization, General concepts, Techniques **Prediction:** Linear regression (Least Square method), Analyzing regression error, Analyzing goodness of fit

Unit VI: Statistical Mining: Logistic Regression, Multivariate regression, ANOVA, PCA, Factor analysis, Graph Mining

Text Books:

- 1 Jiawei Han & Micheline Kamber, "Data Mining Concepts and Techniques", Harcourt India.
- 2. Arun K Pujari, "Data Mining Techniques", University Press.
- 3. Pang-ning Tan, Michael Steinbach, Vipin Kumar, "Introduction to Data mining"

Chairperson	BA:A	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	An Bagan	Version	1.01	AY 2017-18 Onwards

Nagar Yuwak Shikshan Sanstha's

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

2 SEMESTER

CSE1912	Distributed Systems	L=3	T=0	P=0	Credits=3
---------	---------------------	-----	-----	-----	-----------

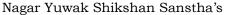
Evaluation	MSE-I	MSE-II	TA	ESE	Total	ESE Duration
Scheme	15	15	10	60	100	3hrs

Unit I: Characterization of Distributed Systems: Introduction, Examples of Distributed Systems, Resource Sharing and The Web, Challenges, System Models: Introduction, Architectural Models- Software Layers, System Architecture, Variations, Interface and Objects, Design Requirements for Distributed Architectures, Fundamental Models- Interaction Model, Failure Model, Security Model.

Unit II: Interprocess Communication: Introduction, The API for the Internet Protocols- The Characteristics of Interprocess communication, Sockets, UDP Datagram Communication, TCP Stream Communication; External Data Representation and Marshalling; Client Server Communication; Group Communication- IP Multicast- an implementation of group communication, Reliability and Ordering of Multicast.

Unit III: Distributed Objects and Remote Invocation: Introduction, Communication between Distributed Objects-Object Model, Distributed Object Model, Design Issues for RMI, Implementation of RMI, Distributed Garbage Collection; RPC, Events and Notifications, Case Study: JAVA RMI

Unit IV: Operating System Support: Introduction, The Operating System Layer, Protection, Processes and Threads –Address Space, Creation of a New Process, Threads.


Unit V: Distributed File Systems: Introduction, File Service Architecture; Peer-to-Peer Systems: Introduction, Napster and its Legacy, Peer-to-Peer Middleware, Routing Overlays.

Unit VI: Coordination and Agreement: Introduction, Distributed Mutual Exclusion, Elections, Multicast Communication. Transactions& Replications: Introduction, System Model and Group Communication, Concurrency Control in Distributed Transactions, Distributed Dead Locks, Transaction Recovery; Replication-Introduction, Passive (Primary) Replication, Active Replication.

Text Books:

- 1. George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems- Concepts and Design", Fourth Edition, Pearson Publication
- 2. Ajay D Kshemkalyani, Mukesh Sighal, "Distributed Computing, Principles, Algorithms and Systems", Cambridge
- 3. Andrew S Tanenbaum, Maarten Van Steen: "Distributed Systems- Principles and Paradigms", Pearson Publication

Chairperson	BAIL	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antopol	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

2 SEMESTER

CSE1913	Optimizing Compilers	L=3	T=0	P=0	Credits=3
---------	----------------------	-----	-----	-----	-----------

Evaluation	MSE-I	MSE-II	TA	ESE	Total	ESE Duration
Scheme	15	15	10	60	100	3hrs

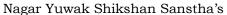
Unit I: Overview Lexical analyzer, Syntax analyzer, Semantic analysis

Unit II: Intermediate code generation, Compiler Challenges for High-Performance Architectures, Dependence and its Properties, Parallelization and Vectorization

Unit III: Loop optimization, Data flow analysis, Enhancing Fine-Grained Parallelism

Unit IV: Creating Coarse-Grained Parallelism, Cache management.

Unit V: Scheduling, Register allocation & Assignment


Unit VI: Case studies of compilers.

Text Books:

- 1. Randy Allen and Ken Kennedy, "Optimizing compilers for modern architectures", Morgan Kaufmann Publishers
- 2. Steven S. Muchnick, "Advanced Compiler Design and implementation".
- 3. A. V. Aho, R. Sethi, & J. D. Ullman, "Compilers: Principles, Techniques &Tools", Pearson Edu.

- 1. C. Fischer and R. LeBlanc, "Crafting a Compiler", Pearson Education.
- 2. A. C. Holub, "Compiler Design in C", Pearson Education.
- 3. Appel Modern Compiler Implementation in Java: Basic Design, Cambridge Press.
- 4. Fraser and Hanson, "A Retargetable C Compiler: Design and Implementation, Pearson Education.

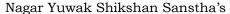
Chairperson	BAIL	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antogat	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

2 SEMESTER


CSE1914	Lab : Optimizing Compilers	L=0	T=0	P=2	Credits=1
---------	----------------------------	-----	-----	-----	-----------

Evaluation	Continuous Evaluation	ESE	Total	ESE Duration
Scheme	40	60	100	

List of Practical's

- 1. a. Write a flex programs that simulate Desktop calculator to calculate the expression with basic operator.
 - b. Write a flex program to count the number of characters, words, and lines present in a multiple input files.
- 2. Write a flex program to evaluate a postfix notation.
- 3. Write a YACC program that reads input file (where c program will be the content of a input file) to check and identify all valid C identifiers.
- 4. Write a Flex and YACC program for the following
 - a. Write a flex grammar file for evaluating the postfix formula below and check if it works correctly. 5 24 8 * 9 4 + 8 *
 - b. Write a YACC grammar file for evaluating the postfix formula above and check if it works correctly.
 - c. Write a YACC grammar file for evaluating the infix formula below and check if it works correctly. 12 4 * 5 + 11 * 3
 - d. Write a Flex and YACC grammar file for evaluating infix formulas and check if it works correctly using the infix formula above.

Chairperson	BA:A	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	An Bagan	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

2 SEMESTER

CSE1915		L=3	T=0	P=0	Credits=3		
Evaluation	MSE-I	MSE-II	TA	ESE	Tot	al	ESE Duration
Scheme	15	15	10	60	10		3hrs

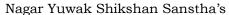
Unit I: Introduction and Overview of Software Architecture, Architectural Models: Models for characterizing and reasoning about architectures, Tools for architectural modeling

Unit II: Typical software system structures (Architectural styles), Techniques for Designing and Implementing these structures,

Unit III: Role of architecture in Software engineering; Enterprise Architectures, Zachman's Framework, Software Product Lines and its Architecture Configurable Software

Unit IV: Design Patterns, Component based development

Unit V: Architectural Description Languages


Unit VI: Self-Adaptive Software, Feature Modeling, Architecture and Model-Based Testing, Detailed Case study on contemporary Software Architecture.

Text Books:

- Software Architecture: Foundations, Theory, and Practice by Eric M. Dashofy, Nenad Medvidovic, Ricard N. Taylor, John Wiley & Sons
- 2. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, MiachelStal, Douglas Schmidt, "Pattern Oriented Software Architecture", Volumes 1 &2, Wiley Publications.
- 3. Len Bass, Paul Clements, Rick Katzman, Ken Bass, "Software Architecture in Practice", Pearson Edu.

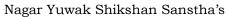
- 1. Kurt Wallnau, Scott Hissam and Robert Seacord, "Building Systems from Commercial Components", Addison-Wesley
- 2. George T. Heineman, William T. Councill, "Component Based Software Engineering", Addison-Wesley

Chairperson	BAIN	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	An Bapat	Version	1.01	AY 2017-18 Onwards

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) PG SoE and Syllabus 2014

Computer Science Engineering

2 SEMESTER


CSE1916	Lab: Software Architecture	L=0	T=0	P=2	Credits=1
---------	----------------------------	-----	-----	-----	-----------

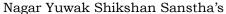
Evaluation	Continuous Evaluation	ESE	Total	ESE Duration
Scheme	40	60	100	

List of Practical's

- 1. Creation of software architecture document
- 2. Identify appropriate architectural style for B.E. project
- Implementation of simple connectors or client server using middleware 3.
- Identify & familiarize tools and techniques for architectural modelling 4.
- Architectural analysis of B.E. project 5.
- 6. Implementation of framework
- Study of non-functional properties of an operating system 7.
- Web service implementation 8.
- Study typical industry cases for design pattern 9.
- 10. Creation of domain model in a known domain

Chairperson	BAIN	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antopat	Version	1.01	AY 2017-18 Onwards

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) PG SoE and Syllabus 2014


Computer Science Engineering

2 SEMESTER

CSE19	17	Semi	nar	L=0	T=0	P=2	Credits=1
Evaluation Scheme	Continuous Evaluation		CA	ESE	Tota	al	ESE Duration
Scheme			100		400	`	

Chairperson	BANA	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	An Bapak	Version	1.01	AY 2017-18 Onwards

YCCE-CT-CSE-19

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

2 SEMESTER

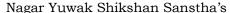
CSE1918	Sof	L=3	T=0	P=0	Credits=3		
Evaluation	MSE-I	MSE-II	TA	ESE	To	otal	ESE Duration
Scheme	15	15	10	60	1	00	3hrs

Unit I: Neural Networks: History, overview of biological Neuro-system, Mathematical Models of Neurons, ANN architecture, Learning rules, Learning Paradigms-Supervised, Unsupervised and reinforcement Learning, ANN training Algorithms-perceptions, Training rules, Delta, Back Propagation Algorithm, Multilayer Perceptron Model, Hopfield Networks, Associative Memories, Applications of Artificial Neural Networks.

Unit II: Fuzzy Logic: Introduction to Fuzzy Logic, Classical and Fuzzy Sets: Overview of Classical Sets, Membership Function, Fuzzy rule generation. **Operations on Fuzzy Sets:** Compliment, Intersections, Unions, Combinations of Operations, Aggregation Operations.

Unit III: Fuzzy Arithmetic: Fuzzy Numbers, Linguistic Variables, Arithmetic Operations on Intervals & Numbers, Lattice of Fuzzy Numbers, Fuzzy Equations.

Unit IV: Introduction of Neuro Fuzzy Systems, Architecture of Neuro Fuzzy Networks.


Unit V: Application of Fuzzy Logic: Engineering, Economics, etc.

Unit VI: Computational Learning Theory: - Instance-Based Learning: k-Nearest-neighbor algorithm, Learning first-order rules etc.

Text Books:

- 1. R. A. Aliev, R. R. Aliev, "Soft Computing and Its Applications"
- 2. Bar Kosko, "Neural Networks and Fuzzy Systems", Prentice-Hall
- 3. Melanie Mitchell, "An Introduction to Genetic Algorithms (Complex Adaptive Systems)", MIT Press

Chairperson	BAIL	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antopal	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

2 SEMESTER

CSE1919	Data Warehousing				L=3	T=0	P=0	Credits=3
Evaluation	MSE-I	MSE-II	TA	ESE		Tota	I	ESE Duration
Scheme	15	15 10				100		3hrs

Unit I: Introduction to data warehousing, real time applications, scope of mining and warehousing for various applications. Need for Data Warehouse, Various schemas: STAR, SNOWFLAKE, FACT CONSTILATION, Data warehouse three tier architecture, OLAP: Architecture, models, implementation consideration. Introduce Model Data warehousing- Various schema, three-tier architecture, design issues, multidimensional model. Data warehouse development life cycle Data Warehouse Design - Massive denormalisation, OLAP, ROLAP and MOLAP, concepts of Fact and dimension table.

Unity II: ETL process, ETL tools, ETL process: Overview, data extraction, transformation, loading. Data Quality: Challenges & tools. ETL Tools: IBM Data

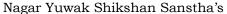
Unit III: Data warehouse analysis and statistical queries, CUBE, ROLL UP and STAR queries.

Unit IV: Space Management in Data warehouse - Schemas for storing data in warehouse using different storage structures, B-tree index, hash index, clusters, Bitmap index functional index, domain index, Data partitions. physical storage using RAID technology

Unit V: Performance and Tuning- Query optimization, memory management, process management. I/o management for Data warehouse.

Unit VI: Handling BIG data, NO sql database, Columnar database Graphs, Key Value pair etc

Text Books:


- 1. Paul Raj Poonia, "Fundamentals of Data Warehousing", John Wiley & Sons
- 2. Sam Anahony, "Data Warehousing in the real world: A practical guide for building decision support systems", John Wiley
- 3. W. H. Inmon, "Building the Data Warehouse", 3rd Ed., John Wiley & Sons.
- 4. W. H. Inmon, C. Kelly, Developing the Data Warehouse", John Wiley & Sons.
- 5. Thomas Connoly, Carolyn Begg, "Database Systems-A practical approach to Design, Implementation and management" 3rd Edition, Pearson Education

Reference Books:

- 1. W. H. Inmon, "Building the operational data store", 2nd Ed., John Wiley
- 2. Kamber and Han, "Data Mining Concepts and Techniques", Hartcourt India

Chairperson	BANA	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antogan	Version	1.01	AY 2017-18 Onwards

YCCE-CT-CSE-21

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

2 SEMESTER

CSE1920	Wireless Sensor Network			L=	3 T=0	P=0	Credits=3
Evaluation	MSE-I	MSE-II	TA	ESE	Total	E	SE Duration
Scheme	15	15	10	60	100		3hrs

Unit I: OVERVIEW OF WIRELESS SENSOR NETWORKS

Challenges for Wireless Sensor Networks, Enabling Technologies For Wireless Sensor Networks.

Unit II: ARCHITECTURES

Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes Operating Systems and Execution Environments, Network Architecture -Sensor Network Scenarios, Optimization Goals and Figures of Merit, GatewayConcepts.

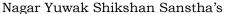
Unit III: COMMUNICATION PROTOCOLS

Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts - S-MAC , Contention based Protocols, Schedule based protocols

Unit IV: LINK LAYER PROTOCOLS

Fundamental, Error Control, Framing, Link Management, Naming And Addressing – Fundamentals, Assignment of MAC Address, Distributed assignment of locally unique addresses, Content based and geographic addressing

Unit V: INFRASTRUCTURE ESTABLISHMENT


Localization and Positioning, Topology Control, Clustering

Unit VI: Middleware for Wireless Sensor Network, Network Management for WSN

Text Books:

- 1. Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.
- 2. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks-Technology, Protocols, And Applications", John Wiley, 2007.

Chairperson	BAIL	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antopol	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

2 SEMESTER

CSE1921	In	Information Retrieval Systems			L=3	T=0	P=0	Credits=3
Evaluation	MSE-I	MSE-II	TA	E	SE	Tota	ıl E	SE Duration
Scheme	15	15	10	6	60	100		3hrs

Unit I: Boolean Retrieval, Vocabulary and postings lists, Dictionaries and tolerant retrieval, Index construction, Index compression

Unit II: Scoring, Weighting and the vector space model, Computing scores in a complete search system, Evaluation in information retrieval, Relevance feedback and query expansion

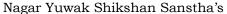
Unit III: XML retrieval, Probabilistic information retrieval, Language models for information retrieval, Text, Classification, Vector space classification

Unit IV: Support Vector Machines and Machine Learning on documents, Flat clustering, Hierarchical clustering, Matrix decompositions and Latent Semantic Indexing.

Unit V: Web search basics, Web Crawling and Indexes, Link analysis

Unit VI: Case studies

Text Books:


1. Christopher D. Manning and Prabhakar Raghavan and Hinrich Schütze, "Introduction to Information Retrieval", Cambridge University Press

Reference Books:

- 1. Kowalski, Gerald, Mark T Maybury, "Information Storage and Retrieval Systems: Theory and Implementation", Springer.
- 2. Ricardo Baeza-Yates, "Modern Information Retrieval", Pearson Education
- 3. David A Grossman and Ophir Frieder, "Information Retrieval: Algorithms and Heuristics", 2nd Edition, Springer
- 4. William B Frakes, Ricardo Baeza-Yates, "Information Retrieval Data Structures and Algorithms", Pearson Education
- 5. Robert Korfhage, "Information Storage & Retieval", John Wiley & Sons.

Chairperson	BANA	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	As Bapak	Version	1.01	AY 2017-18 Onwards

YCCE-CT-CSE-23

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

3 SEMESTER

CSE1923		Computer Vision				T=0	P=0	Credits=3
Evaluation	MSE-I	MSE-II	TA	ES	E	Total	ESE	Duration
Scheme	15	15	10	60		100		3hrs

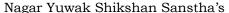
Unit I: Introduction to Human and Computer Vision, Image Registration algorithm

Unit II: Pattern Recognition Techniques, Statistical, Structural, Neural and Hybrid Techniques. Feature Extraction Techniques, Training and Classification

Unit III: Sensing 3D Shapes, How the 3rd dimension changes the problem, Stereo 3D description,3D Model, Matching

Unit IV: Content based image retrieval

Unit V: Virtual reality


Unit VI: Emerging IT applications, Recognition of characters, Fingerprint, Iris and Face

Text Books:

- 1. Shapiro and G. Stockman, "Computer Vision", Prentice Hall
- 2. David A. Forsyth, Jean Ponce, "Computer Vision", Prentice Hall

- 1. A. K. Jain, "Fundamentals of Digital Image Processing"
- 2. Milan Sonka, Vaclav Hlavae, "Image Processing and Machine Vision"
- 3. J.T. Tou and R. C. Gonzalez, "Pattern Recognition Principles"
- 4. King Sun Fun, "Syntactic Pattern Recognition and Applications"
- 5. Fairhurst, "Computer Vision", Prentice Hall

Chairperson	BAIL	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antopol	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

3 SEMESTER

CT1924	Natur	al Language Pr	ocessing	L=3	T=0	P=0	Credits=3
Evaluation	MSE-I	MSE-II	TA	ESE	-	Γotal	ESE Duration
Scheme	15	15	10	60		100	3 hrs

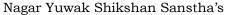
Unit I: Introduction to NLP: Computational Models of Language, Organization of NLP Systems, Natural Language Generation.

Unit II: Syntax: Linguistic Background, Elements of Simple Sentences, Parsing Techniques, Features and Augmented Grammars, Deterministic Parsing.

Unit III: Semantic: Logical Form, Case Relations, Semantic Networks, Basic Operations for Semantic Interpretation, Strategic and Issues.

Unit IV: Context & World Knowledge: Knowledge Representation, Question, Answering Systems: Natural Language Generation, Typical NLP Systems and their Architectures, Cognitive Aspects of Natural Languages

Unit V:Indian Language Processing: Techniques of Machine Translation, Approaches to Machine Translation, Typical Case Studies in Indian Language Context


Unit VI: Introduction to Speech Processing: Word level Morphology and Computational Phonology; Basic Text to Speech; Introduction to HMMs and Speech Recognition, Part of Speech Tagging; Parsing with CFGs; Probabilistic Parsing. Representation of Meaning; Semantic Analysis; Lexical Semantics; Word Sense; Disambiguation; Discourse understanding; Indian language case studies

Text Book:

- 1. James Allen, "Natural Language Understanding", Pearson Education.
- 2. Daniel Jurafsky and James H. Martin, "Speech and Language Processing", Prentice-Hall

- 1. Christopher Manning "Foundations of Statistical Natural Language Processing", MIT Press, Cambridge.
- 2. Akshar Bharathi, Vineet Chaitanya, Rajeev Sangal, "Natural Language Processing A Paninian Perspective", Prentice Hall
- 3. Tom Mitchell, "Machine Learning", McGraw Hill
- 4. Ronald Hausser, "Foundations of Computational Linguistics", Springer-Verlog,
- 5. Winograd, "Language as a cognitive process- syntax", Addison Wesley.
- 6. Popov, "Talking with computer in Natural language", Springer Verlog,

Chairperson	BA:A	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antogan	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

3 SEMESTER

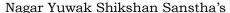
CSE1925	0	Optimization Techniques				P=0	Credits=3
Evaluation	MSE-I	MSE-II	TA	ESE	To	otal	ESE Duration
Scheme	15	15	10	60	1	00	3hrs

Unit-I: Unconstrained Optimization: Optimizing Single-Variable Functions, conditions for Local Minimum and Maximum, Optimizing Multi-Variable Functions.

Unit-II: Constrained Optimization: Optimizing Multivariable Functions with Equality Constraint: Direct Search Method, Lagrange Multipliers Method, Constrained Multivariable Optimization with inequality constrained: Kuhn-Tucker Necessary conditions, Kuhn –Tucker Sufficient Conditions.

Unit-III: Optimization: Quasi-Newton Methods and line search, least squares optimization, Gauss-Newton, Levenberg- Marquartd, Extensions of LP to Mixed Integer Linear Programming (MILP),

Unit-IV: Non-Liner Programming, The Newton Algorithm, Non-Linear Least Squares, Sequential Quadratics Programming (SQP), Constrained Optimization, SQP Implementation, Multi-Objective Optimization, Branch and Bound Approaches, Genetic Algorithms and Genetic Programming,


Unit-V: Optimization in Operation Research: Dynamic Programming, Transportation – Linear Optimization Simplex and Hitchcock Algorithms, Algorithms, Minimax and Maximum Algorithm, Discrete Simulation,

Unit-VI: Integer Programming – Cutting Plane Methods, Separable Programming, Stochastic Programming, Goal Programming, Integer Linear Programming, Pure and Mixed Strategy in theory of Games, Transshipment Problems, Heuristic Methods.

Text Books.

- 1. Winston W L, "Operations Research: Applications and Algorithms",
- 2. Rao S.S., "Optimization: Theory and Applications".
- 3. Walsh G R., "M methods of Optimization".
- 4. Williams H.P., "Model Building in Mathematics Programming".
- 5. Williams H.P., "Model Solving in Mathematics Programming".
- 6. G.L. Nemhauser and L.A. Wolsey., "Intger and Combinational Optimization".
- 7. R.G. Parker and R.L. Rardin., "Discrete Optimization".

Chairperson	BAIN	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antopal	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

3 SEMESTER

CSE1926		Database Security					P=0	Credits=3
Evaluation	MSE-I	MSE-II	TA	E	SE	Tota	ıl	ESE Duration
Scheme	15	15	10		60	100		3 hrs

Unit I: Introduction: Introduction to Databases Security Problems in Databases Security Controls Conclusions **Security Models -1:** Introduction Access Matrix Model Take-Grant Model Acten Model PN Model Hartson and Hsiao's, Model Fernandez's Model Bussolati and Martella's Model for Distributed databases

Unit II: Security Models -2: Bell and LaPadula's Model Biba's Model Dion's Model Sea View Model Jajodia and Sandhu's, Model The Lattice Model for the Flow Control conclusion.

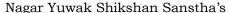
Security Mechanisms: Introduction User Identification/Authentication Memory Protection Resource Protection Control Flow, Mechanisms Isolation Security Functionalities in Some Operating Systems Trusted Computer System Evaluation Criteria

Unit III: Security Software Design: Introduction, A Methodological Approach to Security Software Design Secure Operating System, Design Secure DBMS Design Security Packages Database Security Design

Unit IV: Statistical Database Protection &Intrusion Detection Systems: Introduction Statistics Concepts and Definitions Types of Attacks Inference Controls evaluation, Criteria for Control Comparison .Introduction IDES System RETISS System ASES System Discovery

Unit V: Models for the Protection of New Generation Database Systems -I: Introduction A Model for the Protection of Frame Based Systems A Model for the Protection of Object-Oriented Systems SORION Model for the Protection of Object-Oriented Databases

Unit VI: Models for the Protection of New Generation Database Systems -II: A Model for the Protection of New Generation Database Systems: the Orion Model Jajodia and Kogan's Model, A Model for the Protection of Active Databases Conclusions


Text Books:

- 1. Hassan A. Afyouni, "Database Security and Auditing", India Edition, Cenage Learning
- 2. Castano, "Database Security", Second edition, Pearson Education.

Reference Books:

1. Alfred Basta, Melissa Zgola, "Database security", Cengage learning

Chairperson	BAIN	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antogat	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

3 SEMESTER

CSE1927	Cyber Forensics				T=0	P=0	Credits=3
							T
Evaluation	MSE-I	MSE-II	TA	ESE	T	otal	ESE Duration
Scheme	15	15	10	60	1	00	3hrs

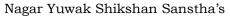
Unit I: Introduction: Review of TCP/IP and TCP, IP Header analysis, Introduction to Cyber World, Cyber attacks and cyber security

Unit II: Information warfare and cyber terrorism, Types of cyber attacks, Cyber Crime and Digital Fraud, Overview of Types of computer forensics i.e. Media Forensics, Network forensics (internet forensics), Machine forensic, Email forensic (e-mail tracing and investigations).

Unit III: Live Data collection and investigating windows environment: windows Registry analysis, Gathering Tools to create a response tool kit, obtaining volatile Data, Computer forensics in windows environment, Log analysis and event viewer, File auditing, identifying rogue machines, hidden files and unauthorized access points.

Unit IV: Live Data collection and investigating Linux environment: Proc file system overview, Gathering Tools to create response toolkit.

Unit V: Handling Investigations: Log Analysis (Network, host, user logging details), Recording incident time/date stamps, Identifying rogue processes, unauthorized access points, unauthorized user/group accounts


Unit VI: Forensic tools and report generation: Recovery of Deleted files, Analyzing network traffic, sniffers, Ethical Hacking, Hardware forensic tools like Port scanning and vulnerability assessment tools like Nmap, Netscan etc. Password recovery (tools like John the ripper, L0phtcrack, and THC-Hydra), Mobile forensic tools and analysis of called data record Template for computer for ensic reports.

Text Books:

- 1. Mandia, K., Prosise, C., Pepe, M., "Incident Response & Computer Forensics", 2 edition, Tata-McGraw Hill,
- 2. Bill Nelson, Amelia Phillips, Frank Enfinger, and Chris Steuart, "Guide to Computer Forensics and Investigations", 2nd Edition, Thomson Learning

- 1. Eoghan Casey, "Digital Evidence and Computer Crime", 2nd Edition, Academic Press File System
- 2. Brian Carrier, "Forensic Analysis", Wesley
- 3. Harlan Carvey, "Windows Forensic Analysis" DVD Toolkit, Syngress Publication
- 4. Steve Bunting, "EnCE: The Official En Case Certified Examiner Study Guide, 2nd Edition, Sybex Publication

Chairperson	BAIN	Date of Release	May 2017	Applicable for	
Dean (Acad. Matters)	Anthopat	Version	1.01	AY 2017-18 Onwards	

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

3 SEMESTER

CSE1928	Pattern Recognition	L=3	T=0	P=0	Credits=3

Evaluation	MSE-I	MSE-II	TA	ESE	Total	ESE Duration
Scheme	15	15	10	60	100	3 hrs

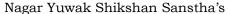
Unit I: Introduction and classifiers based on Bayesian Decision

Unit II: Linear classifiers and non linear classifiers

Unit III: Feature selection and feature generation

Unit IV: Template matching and context dependent classification

Unit V: Clustering algorithms: Sequential and Hierarchical Algorithms


Unit VI: Clustering algorithms based on function optimization and cluster validity

Text Books:

- 1. Sergios Theodoridis and Konstantinos Koutroumbas, "Pattern Recognition", 4th Edition, Academic Press.
- 2. Richard O. Duda, Peter E. Hart and David G. Stork, "Pattern Classification", 2nd Edition, John Wiley
- 3. John Hertz, Andres Krogh & Richard G. Palmer, "Introduction to the theory of Neural Computation", Addison Wesley
- 4. Theodoridis & Koutroumbas, "Pattern Recognition", 4th Edition

Chairperson	BAIL	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Anthopat	Version	1.01	AY 2017-18 Onwards

YCCE-CT-CSE-29

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

3 SEMESTER

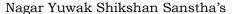
CSE1929	Algorithms for Bioinformatics			L=3	T=0	P=0	Credits=3	
Evaluation	MSE-I	MSE-II	TA	Е	SE	Tota	I	ESE Duration
Scheme	15	15	10	•	60	100		3 hrs

Unit I: Introduction and Information Retrieval: Introduction, Historical overview, Bioinformatics Applications, major databases, data management, data analysis, molecular biology, Tools for Web Search, Data Retrieval tools, Data mining of biological databases.

Unit II: Molecular Biology and Bioinformatics: Introduction to Genes and Proteins Genome Sequences Genome rearrangement, bock allignmeny, global sequence alignment, ORFs, Genes, Intones, Exons, Splice Variants DNA/RNA Secondary Structure, Triplet Coding Protein Sequences, bioinformatics algorithms.

Unit III: Information molecule and information flow: Central dogma of molecular biology, Problem in molecular and bioinformatics approach, Basic component, Chemistry of DNA and RNA, Basics of DNA replication

Unit IV: Introduction to protein, Amino acid and Protein Structure: Secondary, Tertiary, Quaternary, protein Folding protein function, protein purification and characterization, Data integration and Data Analysis, Multiplicity of Data and redundancy


Unit V: Genome Analysis and Gene Mapping: Pairwise Sequence Alignment, Database Similarity Searching: BLAST, FASTA, Multiple Sequence Alignment, Profiles and Hidden Markov Models Structure prediction methods for gene, Gene expression and Microarray. Protein classification and Structure Visualization, Protein structure Prediction, Proteomics, Protein folding

Unit VI: Applications: Drug Discovery: Introduction, Technology, Cell Cycle, G-Protein coupled Receptor as drug target.

Text Books:

- 1. S. C. Rastogi, Namita Mendirata, Parag Rastogi, "Bioinformatics concepts Skills and application", CBS publisher
- 2. S. C. Rastogi, Namita Mendirata, Parag Rastogi, "Bioinformatics Methods and application", PHI
- 3. D. Baxevanis and F. Oulette, "Bioinformatics: A practical guide to the analysis of genes and proteins", Wiley
- 4. Arthur M. Lesk, "Introduction to Bioinformatics", Oxford University

Chairperson	BANA	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	An Bagan	Version	1.01	AY 2017-18 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

PG SoE and Syllabus 2014

Computer Science Engineering

3 SEMESTER

CSE1930	Semantic Web and Social Networks	L=3	T=0	P=0	Credits=3
---------	----------------------------------	-----	-----	-----	-----------

Evaluation	MSE-I	MSE-II	TA	ESE	Total	ESE Duration
Scheme	15	15	10	60	100	3hrs

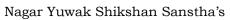
Unit I: Web Intelligence: An Intelligent Web Applications, The Information Age ,The World Wide Web, Limitations of today's Web, The Next Generation Web, Machine Intelligence, Artificial Intelligence, Ontology, Inference engines, Software Agents, Berners-Lee www, Semantic Road Map, Logic on the semantic Web.

Unit II: Knowledge Representation for the Semantic Web: Ontologies and their role in the semantic web, Ontology Languages for the Semantic Web –Resource Description Framework(RDF) / RDF Schema, Ontology Web Language (OWL), UML, XML/XML Schema.

Unit III: Ontology Engineering: Ontology Engineering, Constructing Ontology, Ontology Development Tools, Ontology Methods, Ontology Sharing and Merging, Ontology Libraries and Ontology Mapping, Logic, Rule and Inference Engines.

Unit IV: Semantic Web Applications, Services and Technology: Semantic Web applications and services, Semantic Search, e-learning, Semantic Bioinformatics, Knowledge Base, XML Based Web Services, Creating an OWL-S Ontology for Web Services, Semantic Search Technology, Web Search Agents and Semantic Methods,

Unit V: Social Network Analysis and Semantic web: Social Networks analysis, development of the social networks analysis, Electronic Sources for Network Analysis – Electronic Discussion networks, Blogs and Online Communities, Web Based Networks. Building Semantic Web Applications with social network features.


Unit VI: Case Studies

Text Books:

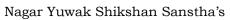
- 1. Berners Lee, Godel and Turing, "Thinking on the Web", Wiley Interscience
- 2. Peter Mika, "Social Networks and the Semantic Web", Springer

- 1. J. Davies, Rudi Studer, Paul Warren, "Semantic Web Technologies, Trends and Research in Ontology Based Systems", John Wiley & Sons.
- 2. Liyang Lu, Chapman and Hall, "Semantic Web and Semantic Web Services", CRC Publishers,(Taylor & Francis Group)
- 3. Heiner Stuckenschmidt, Frank Van Harmelen, "Information Sharing on the semantic Web", Springer Publications.
- 4. T. Segaran, C. Evans, J. Taylor, O. Reilly, "Programming the Semantic Web", SPD.

Chairperson	BANA	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	An Bagan	Version	1.01	AY 2017-18 Onwards

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) PG SoE and Syllabus 2014

Computer Science Engineering


3 SEMESTER

CSE1922	Project Phase –I	T=0	P=16	Credits=8
---------	------------------	-----	------	-----------

Evaluation	Continuous Evaluation	CA	ESE	Total	ESE Duration
Scheme		100		100	

Chairperson	SA:A	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antogah	Version	1.01	AY 2017-18 Onwards

YCCE-CT-CSE-32

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) PG SoE and Syllabus 2014

Computer Science Engineering

4 SEMESTER

CSE1931	Project Phase –II			T=0	P=24	Credits=12
Evaluation	Continuous Evaluation	CA	E	SE	Total	ESE Duration
Scheme		40		60	100	

Chairperson	BA-A	Date of Release	May 2017	Applicable for
Dean (Acad. Matters)	Antogah	Version	1.01	AY 2017-18 Onwards

YCCE-CT-CSE-33