Nagar Yuwak Shikshan Sanstha's

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) (Accredited 'A' Grade by NAAC with a score of 3.25) Hingna Road, Wanadongri, Nagpur - 441 110

SoE & Syllabus 2018-19 M. Tech. Communication Engineering

SN	Sem	Sub	Subject	T/P		Со	nta	ct	Credits		% Weigh	tage		ESE
SIN	Sem	Code	Subject	1/F	L	Т	Ρ	Hrs	Credits	MSE-I	MSE-II	TA	ESE	Duration
			I SEME	STE	R									
1	1	ET2901	Mathematical Foundations for Communication Engineering	Т	3	0	0	3	3	15	15	10	60	3
2	1	ET2902	Passive RF Circuits & Systems	Т	3	0	0	3	3	15	15	10	60	3
3	1	ET2903	Lab: Passive RF Circuits & Systems	Ρ	0	0	2	2	1			40	60	
4	1	ET2904	Advanced Digital Communication	Т	3	0	0	3	3	15	15	10	60	3
5	1	ET2905	Lab: Advanced Digital Communication	Ρ	0	0	2	2	1			40	60	
6	1	ET2906	Adaptive Signal Processing	Т	3	0	0	3	3	15	15	10	60	3
7	1	ET2907	Lab: Adaptive Signal Processing	Ρ	0	0	2	2	1			40	60	
8	1		Professional Elective- I	Т	3	0	0	3	3	15	15	10	60	3
			Total		15	0	6	21	18					

 List of Professional Electives-I

 1
 ET2908
 PE I: Error Control Coding

 1
 ET2909
 PE I: Embedded Systems & DSP Processor

 1
 ET2910
 PE I: Pattern Recognition

			II SEME	STE	R									
1	2	ET2911	Advanced Antenna Theory	Т	3	0	0	3	3	15	15	10	60	3
2	2	ET2912	Lab: Advanced Antenna Theory	Ρ	0	0	2	2	1			40	60	
3	2	ET2913	VLSI Signal Processing	Т	3	0	0	3	3	15	15	10	60	3
4	2	ET2914	Digital Image processing	Т	3	0	0	3	3	15	15	10	60	3
5	2	ET2915	Lab: Digital Image processing	Ρ	0	0	2	2	1			40	60	
6	2	ET2916	Wireless Communications & Networks	Т	3	0	0	3	3	15	15	10	60	3
7	2		Professional Elective -II	Т	3	0	0	3	3	15	15	10	60	3
8	2	ET2921	Seminar	Ρ	0	0	2	2	1			100		
		•	Total		15	0	6	21	18					

Lis	st of	Professi	onal Electives-II
2	2	ET2917	PE II: Selected Topics in Communication Systems
2	2	ET2918	PE II: Speech Processing
2	2	ET2919	PE II: Detection & Estimation Theory
2	2	ET2920	PE II: Real Time Operating System

			III SEME	STE	R									
1	3		Professional Elective- III	Т	3	0	0	3	3	15	15	10	60	3
2	3		Professional Elective-IV	Т	3	0	0	3	3	15	15	10	60	3
3	3	ET2937	Project Phase-I	Ρ	0	0	16	16	8			100		
			Total		6	0	16	22	14					

List (of Professi	ional Electives-III
3	ET2931	PE III: Multimedia Communications
3	ET2932	PE III: Active RF Devices and Circuits
3	ET2933	PE III: Soft Computing
List	of Professi	onal Electives-IV
3	ET2934	PE IV: High Speed Networks
3	ET2935	PE IV: Wireless Sensor Networks

3	ET2936	PE IV: Micro	Electro N	<i>l</i> echanical	System
---	--------	--------------	-----------	--------------------	--------

	IV SEMESTE	R						
4 ET2940 Project Phase-II	Р	0	0	24	24	12	40 60)
Total		0	0	24	24	12		
Grand Total of Credits						62		

and	Anthapat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 & Sem
Chairperson	Dean (Acad. Matters)	Date of Release	Version	3 & 4 AY 2019-20 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

			I Semester				
ET2901	Mathematical Fo	oundations for Comm	unication Engineerir	g L=3	T=0	P=0	Credits=3
Evaluation	n MSE-I	MSE-II	ТА	ESE	Total	E	SE Duration
Scheme	15	15	10	60	100		3 hrs

OBJECTIVES:

To introduce the fundamentals of probability theory and random processes and illustrate these concepts with Communication engineering applications such as signal processing and digital communications.

UNIT-1:

Definitions, limitations of classical and relative-frequency-based definitions. Sets, fields, sample space and events; axiomatic definition of probability. Combinatory: Probability on finite sample spaces. Joint and conditional probabilities, independence, total probability; Bayes' rule and applications

UNIT-2:

Definition of random variables, continuous and discrete random variables, cumulative distribution function (cdf) for discrete and continuous random variables; probability mass function (pmf); probability density functions (pdf) and properties. Jointly distributed random variables, conditional and joint density and distribution functions, independence; Bayes' rule for continuous and mixed random variables.

UNIT-3

Uniform, Gaussian and Rayleigh distributions; Binomial, and Poisson distributions; Multivariate Gaussian distribution Functions of a random variable, Functions of two random variables; Sum of two independent random variables.

UNIT-4:

Expectation: mean, variance and moments of a random variable. Joint moments, conditional expectation, Moment-generating and characteristic functions and their applications, Bounds and approximations:. Schwarz Inequality, Chebyshev inequality and Chernoff Bound, Central limit theorem and its significance.

06Hrs

UNIT-5

Random vector: Joint distribution and densities, multiple transformation, mean vector, covariance matrix and properties, simultaneous, characteristic functions of random vectors, parameter estimation **06Hrs**

UNIT-6:

Basic definitions, important Random processes, continuous-time linear systems with random inputs white noise, classification of random processes, WSS processes and LSI systems. 06Hrs

Text books:

1	Probability and Random Processes	2002	H. Stark, J.W Woods	Pearson Education
2	Probability, Random Variables and Stochastic Processes	2002	A. Papoulis, S. U. Pillai,	McGraw Hill
Re	ference books:			
1	Probability and Stochastic Processes	1992	R D Yates, D J Goodman	John Wiley and Sons

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards
	Ŋ	(CCE-M. Tech-CE-1		

			IS	Semester				
ET2902	Passi	/e RF Circuits a	nd System	s	L=3	T=0	P=0	Credits=3
Evaluation Scheme	MSE-I	MSE-II		ТА	ESE	Tota	ıl	ESE Duration
Scheme	15	15		10	60	100		3 hrs
and RF Filter de <u>NIT-1:</u> Review o	nd study the design of F signing, Study of RF Ac of Basic Transmission L pled lines in Stripline ar	tive components ine Theory, Plar	nar Transmi	ssion Lines - S	tripline, microstrip		nded strip	line and coplan 06 H
ort, three port,	ork Analysis - Microwa four port networks; Imp ching, Quarter wave trai	edance Matching	g Technique					
	omponents -Lumped ele ectional couplers, Powe			es and resonato	rs in microstrip, A	nalysis and c	lesign of S	Stripline/microst
	ase Shifters Basic serie e shifters in microstrip, <i>i</i>				nd SPDT switche	s, Switched li	ne, branch	n line coupled an 06 H
	umped element filter d bass filter, Parallel coupl					cy transforma	ntion, High	n impedance/Lo 06 H
<u>NIT-6:</u> asics of MIC, M	IMIC and MEMS techno	logies - Substrat	es used.					06 H
ext books: Radio Fre	quency and Microwave	Electronics	2001	M.M. Rad	dmanesh,	Pear	son Educa	ation Asia,
	ke Transmission Line f Integrated Circuits,	or Microwave	1989.	B. Bhat&	S.K. Koul	New	Age Intl. (P) Ltd.,
	s: Frequency and Communication Circuit and Design,		001.	D. K. Misra	à,	John W	/iley & Soi	ns,

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards
	1	ICCE NA Task CE 2		

	I Semester									
ET2903		Lab: Passive RF Circuits and Systems	L=0	T=0	P=2	Credits=1				
Evaluati	on Scheme	Continuous Evaluation	ESE		Total	ESE Duration				
		40	60		100					

Ten Experiments based on

- Low Pass, Band Pass, Band Stop Filters 1.
- 2. Couplers
- Phase Shifter 3.
- 4. Power Divider
- Hybrid ring Coupler 5.
- 6. Switches

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 & Sem 3 & 4 AY 2019-20
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

	I Semester												
ET2904		Adva	I	_=3	T=0	P=0	Credits=3						
Evaluatio Scheme		MSE-I	MSE-II	ТА	ESE		Total		ESE Duration				
		15	15	10	60		100		3 hrs				

OBJECTIVES:

This course discusses the principles that underline the analysis and design of digital communication systems. The focus is on the reliable transmission and reception of symbols over noisy channels. The students will explore linear and nonlinear modulation techniques, various channels like AWGN and fading, Synchronization techniques, Equalization techniques and MIMO channels

UNIT-1: Review of fundamental concepts and parameters in Digital Communications, Performance of BPSK and QPSK in AWGN channel, Performance of binary FSK and M-ary PSK in AWGN channel.

UNIT-2:

Minimum Shift Keying (MSK) Modulation, GMSK, Continuous Phase Modulation (CPM) Schemes Channel Characterization and Modeling, Orthogonal Frequency Division Multiplexing (OFDM), Carrier Synchronization, Timing synchronization. 06 Hrs

UNIT-3

Representations of band pass signal and systems, signal space representation, representation of digitally modulated signals, spectral characteristics of digitally modulated signals.

06 Hrs

06 Hrs

06 Hrs

UNIT-4:

Baseband reception and probability of error, the ML and MAP detection strategies, ML detection with zero mean AWGN, the optimum filter, Schwarz's inequality, transfer function of optimum filter, matched filter, properties of Matched filter, correlation receiver, equalization, the zero forcing equalizer, adaptive equalizer, scrambling, the eye pattern. 06 Hrs

UNIT-5

Spread spectrum signals for digital communications: Introduction to Spread Spectrum Modulation, DSSS, FHSS, and CDMA signals, Code Acquisition and Tracking, Spread Spectrum as a Multiple Access Technique.

UNIT-6:

Multichannel and Multicarrier Systems; Digital Communications through Fading Multipath channels; Multi User Communications.

Text 1	books: Digital Communications	1995	5 4 th Edition	J.G.Proakis	McGraw Hill,
2	Digital Communications	1998	3	Simon Haykin	John Wiley & Sons
Refe 1	rence books: Principles of Digital Communications and Co	ding	1979	J. Viterbi and J. K. Omura	McGraw Hill,
2	Spread Spectrum Communications		1995.	MarvinK.Simon,Jim K Omura, RobertA. Scholtz, Barry K.Levit	John Wiley & Sons
3	CDMA Principles of Spread Spectrum Communications		1995.	Andrew J Viterbi	Addison Wesley

mint	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 & Sem 3 & 4 AY 2019-20
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards
	,	ACCE NA TUR OF A		

	I Semester									
ET2905	Lab : Advanced Digital Communication	L=0	T=0	P=2	Credits=1					
Evaluatio	Continuous Evaluation	ESE	Tota	al	ESE Duration					
Scheme	40	60	10)						

Ten Experiments based on

- BPSK 1.
- QPSK 2.
- 3. MSK
- MIMO 4.
- OFDM 5.
- **Channel Estimation** 6.

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 & Sem 3 & 4 AY 2019-20
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Onwards

I			I Semes			-	
ET2906	Ac	laptive Signal	Processing	L=:	3 T=0	P=0	Credits=3
Evaluation	MSE-I	MSE-II	ТА	ESE	Tot	al	ESE Duration
Scheme	15	15	10	60	10	0	3 hrs
adaptiv	e filters are studied. It	s intended to ir	ntroduce a course in	pplications in communic n multirate signal proces ithm. Prediction error filt	sing, filtering an		estimation.
NIT-2:							06 Hr
daptive filters.		orithm. Conve	rgence of adaptive	e algorithms. Fast algo	rithms. Applicat	ions; Nois	e canceller, ech
cancen	er and equalizer.						06 Hr
<u>NIT-3</u>	a describes filteres. The		a successful of a sthe			1.101	20
ransform domai	h adaptive filters, The c	orthogonalizatio	on property of ortho	gonal transforms, The tr	ansform domain	LIVIS algor	100 100 100 100 100 100 100 100 100 100
INIT-4:							
ecursive least -	squares algorithms. M	atrix inversion	lemma. Convergen	ce analysis of the RLS a	lgorithm.		06 H
I <mark>NIT-5</mark> daptive beam fo	rming. Kalman filtering						
	innig. Rainan incomig	•					06 Hi
NIT-6:							
ast RLS algorith	m, Least square forwa m. Case studies and li			vard prediction, least sq	uare lattice, The	e RLS algo	rithm, The FTRL
aigonii	m. Case studies and in	idustrial Applic	alions.				06 Hi
ext books:							
Adaptive F	ilters:Theory& Applica	ions		B.FarhangBoroujen	y wi	ley Publica	ition
Adaptive F	ilter Theory		1996,(3/e),	Simon Haykin	Pi	entice- Ha	II
eference book	s:						
Statistical	and Adaptive Signal Pr	ocessing	2005	D.G.Manolakis	Μ	cGraw-Hill,	
Statistical Modeling	Digital Signal Pro	ocessing and		M.H.Hays,	Jo	hn-Wiley.	

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards
	,			

	I Semester									
ET2907		Lab : Adaptive Signal Processing		L=0	T=0	P=2	Credits=1			
Evaluatio Scheme		Continuous Evaluation		ESE	Tot	al	ESE Duration			
Scheme		40		60	10	0				

Ten Experiments based on

- 1. Random Number generator and finding correlation and autocorrelation
- 2. Wiener filter
- 3. LMS and NLMS
- 4. Adaptive equalizer
- 5. Linear predictor
- 6. RLS algorithm and fast algorithm

mit	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 & Sem 3 & 4 AY 2019-20
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

I Semester									
ET2908	PE I: Error Control Coding L=3 T=0 P=0 Credits=3							Credits=3	
Evaluation Scheme	MSE-I	MSE-II	ТА	ES	SE	Total	E	ESE Duration	
Scheme	15	15	10	6	0	100		3 hrs	

OBJECTIVES:

The purpose of the course is to present error correction/detection coding in a modern setting, covering both traditional concepts thoroughly as well as modern developments in soft-decision and iteratively decoded codes and recent decoding algorithms for algebraic codes.

UNIT-1:

Coding for reliable digital transmission and storage. Groups, Rings, Vector Spaces, Galois Fields, Polynomial rings.

UNIT-2:

Channel models, Linear Block codes, syndrome and error detection, the minimum distance of block code,standard array and syndrome decoding, Cyclic codes, polynomials, the division algorithm for polynomials,circuit implementation of cyclic codes. 06 Hrs.

06 Hrs.

06 Hrs.

06 Hrs.

UNIT-3

Convolution codes, decoding algorithms for Convolution codes, Viterbi, Stack algorithm, Fano algorithm, Application of Convolution codes. 06 Hrs.

<u>Unit 4:</u>

BCH codes, primitive elements, minimal polynomials, generator polynomials in terms of minimal polynomials, Reed Solomon Codes, Berlekamp-Massey and Euclid decoding algorithm, Decoding beyond the minimum distance Parameter, Applications of Reed-Solomon codes.

UNIT-5

Trellis coded Modulation, Combinatorial description of Block and Convolution codes, mapping by set partitioning ,TCM design rule.

<u>UNIT-6:</u>

Toxt books

Soft decision decoding algorithms, Iterative decoding algorithms, Turbo-decoding, Two-way algorithm, LDPC codes, Use of LDPC codes in digital video broadcasting, belief propagation (BP) algorithms, Space-Time codes. 06 Hrs.

1	Error Control Coding: Fundamentals and Applications	2003.	Shu Lin and Danicl J. Costello Jr	Prentice Hall,
2	Error Control Systems for Digital Communication and Storage	1995	S. B Wicker	Prentice- Hall
Refe	rence books:			
1	Theory and Practise of Error Control Codes	2003.	Shu Lin and Danicl J. Costello Jr	Prentice Hall,
2	Error Control Systems for Digital Communication ar Storage	nd 1983.	Blahut R. E	Addisson Wesley
3	Algebraic codes for Data transmission	2003	Blahut R.E	Cambridge University Press
4	Fundamentals of Convolutional codes	1999.	Johannesson R and Zigangirov K.S	IEEE press
5	Trellis structure of codes, Chapter 24 of Handbook Coding Theory.	of	V. S Pless and W. C Huffman, A. Vardy	
6	Error Correction Coding-Mathematical methods algorithms	&	Todd K Moon	Wiley

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &					
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards					

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

	I Semester								
ET2909	ET2909 PE I: Embedded Systems & DSP Processor L=3 T=0 P=0 Credits=3								
Evaluation	MSE-I	MSE-II	ТА	ESE		Total	ESE Duration		
Scheme	15	15	10	60		100	2 hrs		

OBJECTIVES:

The course introduces us with the basics of embedded systems, familiarity with the Optimizing Design Metrics, processor technology, IC technology, design technology, hardware, the software, peripherals, memory and interfacing and tradeoffs.

UNIT-1:

Embedded Systems, Introduction, Design Metrics, Processor Technology, IC Technology, Design Technology, Design Productivity Gap, Custom Single purpose Processor Design, RT level design, FSMD, Data-paths, Optimization, Instruction set simulators for simple processors. 06Hrs

UNIT-2:

Architectural Features Of ARM: Processor modes, Register organization, Exceptions and its handling,Memory, Memory-mapped I/Os, ARM and THUMB instruction sets, Addressing modes, DSP extensions, ARM sample codes 06 Hrs

UNIT-3

ARM7/9 Core: H/W architecture, Timing diagrams for Memory access, Co-processor interface, Debug support, Scan chains, Embedded Real Time ICE, Hardware and software breakpoints. Buses: AMBA, ASB, APB, Development tool like Compilers, Debuggers, IDE etc.

UNIT-4:

DSP Architecture: MAC, Modified bus structures and Memory access schemes, Multiple access Memory, Multi-ported memory, VLIW architecture, Pipelining, Special addressing modes, On chip peripherals.

UNIT-5:

TMS320C3X -32 bit floating point DSP Processor: Introduction, features, Applications, Block diagram, Internal architecture, CPU & data paths, Functional units, Addressing modes, Memory architecture, External memory accesses, Pipeline operation, Peripherals. 06Hrs

UNIT-6:

Assembly language programming. Hardware tools: DSP and other DSP boards Software tools: Assembly language tools.

06Hrs

06Hrs

06 Hrs

Text books:

1	ARM System Developer's Guide: Designing and Optimizing	2004	Sloss Andrew N, Symes Dominic, Wright Chris	Morgan Kaufman Publication
2	Digital signal processors	2002, 1st Edition	B. Venkataramani, M Bhaskar	Tata McGraw Hill
Refe 1	rence books: ARM System-on-Chip Architecture	2 nd Edition,2002	Steve furber	Pearson Education
2	Embedded System Design	2002, 1st Edition	Frank Vahid and Ton Givargis	w Wiely Publication
3	Embedded System Design	2003	Raj Kamal	Tata McGraw Hill

mint	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &			
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards			
VCCE M Tech CE 0							

			I Semester					
ET2910	PE I: P	attern Recogi	nition		L=3	T=0	P=0	Credits=3
Evaluation	MSE-I	MSE-II	ТА	F	SE		Total	ESE Duration
Scheme	15	15	10		50		100	3 hrs
recognition algorith <u>UNIT-1:</u> Introduction ,Applic	sic mathematical and statis ms. ations of Pattern Recognitic		·	·	Ū			
	pilities of Events, Random amples, Minimum Risk Estir			and Densitie	s Momen	ts of Ra	andom Variab	es ,Estimation of 06Hrs
	Making s' Theorem, Multiple Feat r Rates ,The Leaving-One-C							
	cision Making ograms, Kernel and Windo ant Functions , Minimum Sq							
<u>UNIT-5</u> Clustering Introduction , Hiera	rchical Clustering, Partitiona	al Clustering, P	roblems					07Hrs
<u>UNIT-6:</u> Recent trends in P	attern Recognition							03 Hrs
Text books: 1 Pattern Recog	nition and Image Analysis	Earl Gose,I	Richard Johnsonb	augh			Printice H	lall
2 Pattern Classi	fication	2006 Ri	chard O. Duda, P	eter E. Hart a	nd David	G. Stork	2nd Editio	on, John Wiley,
Reference books: 1 Pattern Rec	ognition and Machine Learn	ing 200	9 C.	VI. Bishop			Springer,	
2 Pattern Rec	ognition	200		eodoridis utroumbas	and	K.	4th Edition, A	cademic Press

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &					
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards					

II Semester								
ET2911	Advar	ced Antenna The	ory	L=3	T=0	P=0	Credits=3	
Evaluation	MSE-I	MSE-II	ТА	ESE	То	tal	ESE Duration	
Scheme	15	15	10	60	1(00	3 hrs	
oncepts are em <u>NIT-1:</u>	at basic principles and phasized. rameters of Antenna, Rad		J		advances o	n antennas	and its physic	
	rameters of Antenna, Trac						06Hi	
	Microstrip rectangular ar banding techniques. Printe		tennas. Analys	s and design, Feeding	Methods; C	ircularly pc	larized microstri 06Hr	
<u>NIT-3</u>								
agi array of line	ar elements and printed v	ersion, Log-periodio	c dipole array. F	requency Independent A	Antennas Pla	anar spiral a	antenna,	
							06H	
<u>NIT-5</u>	Planar array, Array factor, has- Field equivalence pr rem						06Hi	
<u>NIT-6:</u> ntennas for mo ultiple Access.	bile communication. Hanc	lset antennas: FIFA	., Smart antenn	as, Switch beam system	, Adaptive a	rray systen	n, Spatial Divisio 06 H r	
ext books:								
Antenna Th	eory and Design	199	7. (C. A. Balanis	Jo	ohn Wiley 8	Sons	
eference book CAD of Applicatio	Microstrip Antennas fo	or Wireless 199	6. F	.A. Sainati	Ar	tech House)	
Antenna c	lesign Handbook	198		Garg, P. Bharhia, I. nd A. Ittipiboo	Bahl, Ar	tech House	9.	
Minungtuin	Antennas: Theory & Desi			R. James, P.S. Ha		,		

3 Microstrip Antennas: Theory & Design J. R. James, P.S. Hall and UK C.Wood, , Peter Peregrinns

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &					
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards					

	II Semester								
ET2912	ET2912 Lab : Advanced Antenna Theory					P=2	Credits=1		
-							·		
Evaluatio Scheme		Continuous Evaluation		ESE	Tota	al	ESE Duration		
40 60				60	10)			

Sr. No. Ten Experiments Based on

- Microstrip patch antenna 1.
- 2. Slot Antenna
- 3. Yagi Uda Antenna
- 4. Log periodic Antenna
- 5. Horn Antenna
- 6. Antenna Arrays

mint	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 & Sem 3 & 4 AY 2019-20
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

II Semester									
ET2913	,	L=	:3	T=0	P=0	Credits=3			
Evaluation	MSE-I	MSE-II	ТА	ESE		I	ESE Duration		
Scheme	15	15	10	60		100		3 hrs	

OBJECTIVES

The students shall gain proficiency in subjects like the basic design of theory involved in VLSI for signal processing and communication systems, various software tools related to VLSI, Signal Processing and Communication Systems.

<u>UNIT-1:</u>

Introduction to DSP systems – Typical DSP algorithms, Data flow and Dependence graphs - critical path, Loop bound, iteration bound, longest path matrix algorithm, Pipelining and Parallel processing of FIR filters, Pipelining and Parallel processing for low power, 06Hrs

UNIT-2:

Retiming – definitions and properties. Unfolding – an algorithm for unfolding, properties of unfolding, sample period reduction and parallel processing application. 06Hrs

UNIT-3

Folding transformation, Register minimisation techniques Systolic architecture design, FIR systolic arrays, selection of scheduling vector, 2d systolic array design, systolic design for space representations containing delays.

06Hrs

06 Hrs

<u>UNIT-4:</u>

Fast convolution – Cook-Toom algorithm, modified Cook-Toom algorithm

Pipelined and parallel recursive filters – Look-Ahead pipelining in first-order IIR filters, Look-Ahead pipelining with power-of-2 decomposition, Clustered look-ahead pipelining, Parallel processing of IIR filters, combined pipelining and parallel processing of IIR filters. 06 Hrs

<u>UNIT-5</u>

Bit-level arithmetic architectures – parallel multipliers with sign extension, parallel carry-ripple and carry-save multipliers, Design of Lyon's bitserial multipliers using Horner's rule, bit-serial FIR filter, CSD representation, CSD multiplication using Horner's rule for precision improvement

UNIT-6:

Algorithmic strength reduction in filters and transforms – 2-parallel FIR filter, 2-parallel fast FIR filter, DCT architecture Numerical strength reduction- subexpression elimination, multiple constant multiplication, iterative matching, sub-expression sharing in digital filters, additive and multiplicative number splitting 06 Hrs

Text books:

1	VLSI Digital Signal Processing Systems, Design and implementation	2007 1 st Edition	Keshab K. Parhi	Wiley Interscience,.
---	---	------------------------------	-----------------	----------------------

Reference books:

1	•	•	Processing e Arrays".	with	Field	2 nd 2004	Edition,	U. Meyer- Bease,	Springer,
---	---	---	--------------------------	------	-------	-------------------------	----------	------------------	-----------

2	1	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &				
(Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards				

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

				II Semester					
ET2914		C	L=3	T=0	P=0	Credits=3			
Evaluation	n	MSE-I	MSE-II	ТА		ESE	Tota	1	ESE Duration
Scheme	eme 15 15 10						100		3 hrs

OBJECTIVES:

Objectives of the course is to provide an introduction to basic concepts and methodologies for digital image processing, and to develop a foundation that can be used as the basis for further study and research in this field. Concepts of video and standards are introduced.

UNIT-1:

Digital image fundamentals – image acquisition, representation, visual perception, quality measures, Sampling and quantization, basic relationship between pixels, imaging geometry, color spaces, Image enhancement – point processing, spatial domain filtering. 06 Hrs

UNIT-2:

Image transforms - DFT, DCT, Haar, KL transform, Wavelets and multiresolution processing, Sub-band coding, Multiresolution expansion, One dimensional wavelet transform, Wavelet series expansion, Discrete wavelet transform, Continuous wavelet transform, fast wavelet transform, 2-D wavelet transform, Wavelet packets.

<u>UNIT-3</u>

Frequency domain filtering, Image restoration/degradation model, Restoration-spatial domain filtering, Periodic Noise Reduction by Frequency Domain filtering, Motion debluring, Estimation the degradation function, Inverse filtering, Minimum Mean Square Error (Wiener Filtering),Constrained Least square filter. 06 Hrs

<u>UNIT-4:</u>

Image compression – Data redundancy, lossless and lossy compression techniques, standards for image compression – JPEG, JPEG2000. 06 Hrs

<u>UNIT-5</u>

Image Segmentation-The detection of Discontinuities: Point, Line and Edge Detections :Gradient Operators and Laplacian, Edge linking and Boundary detection : Local Processing and Global Processing Via Hough Transform, Thresholding. Region based segmentation, Clustering technique, Active Contour. 06 Hrs

UNIT-6:

Representation Schemes, Chain Codes, Polygon Approximation, signatures, Skeleton, Boundary Descriptors: Simple Descriptors, Shape Numbers, Fourier Descriptors, Region Descriptor: statistical moments, simple descriptor, Topological descriptor, Texture, Dilation and erosion, opening and closing hit-or-miss transformation, morphological algorithms.

06Hrs

06 Hrs

Text 1	books: Digital Image Processing	2002	R. C. Gonzalez and R E Woods	Pearson Education
2	Digital Image Processing		S. Jayaraman, S. Esakkirajan, T Veerakumar	McGraw-Hill
Refe 1	Frence books: Fundamentals of Digital Image Processing	1989	A K Jain	Pearson Education
2	Digital Image Processing	2001	W Pratt	Wiley

m	Antopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards

1.

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

_____ ____

II Semester

ET2915	Lab : Digital Image Processing	L=0	T=0	P=2	Credits=1
Evaluatior Scheme	Continuous Evaluation	ESE	Tota	I	ESE Duration
Scheme	40	60	100		

Sr. No. Ten Experiments Based on

Image Enhancement & Spatial Domain Filtering

- Image Transforms 2.
- **Frequency Domain Filtering** 3.
- Image Compression 4.
- **Image Segmentation** 5.
- **Morphological Operations** 6.

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

II Semester									
ET2916	Wireless	s Communications &	L=3	T=0	P=0	Credits=3			
Evaluation	MSE-I	MSE-II	ТА	ESE	То	tal	ESE Duration		
Scheme 15 15 10					1()0	3 hrs		

OBJECTIVES:

This course provides an authoritative treatment of the fundamentals of mobile communications, one of the fastest growing areas of the modern telecommunications industry. It stresses the fundamentals of mobile communications engineering and the networks that are important for the design of any mobile system.

UNIT-1:

Radio Propagation Characteristics: Reflection, diffraction and Scattering, Models for path loss, shadowing and multipath fading (delay Spread, coherence band width, coherence time, Doppler spread), Multipath Fading Models. 06 Hrs

UNIT-2:

Diversity: Realization of Independent Fading Paths ,Diversity System Model , Selection Combining , Threshold Combining , Maximal Ratio Combining, Equal-Gain Combining ,Moment Generating Functions in Diversity Analysis , Diversity Analysis for MRC , Diversity Analysis for EGC and SC , Diversity Analysis for Noncoherent and Differentially Coherent Modulation , Transmitter Diversity 06 Hrs

UNIT-3

Multicarrier Modulation, Fading across Subcarriers, Frequency Equalization, Precoding, Adaptive Loading, Coding across Sub channels RAKE receivers, 06 Hrs

UNIT-4.:

UNIT-5:

Wireless Systems and Standards: GSM-GSM services and features, Architecture, Radio Subsystem, GSM channel types, Frame structure and signal processing in GSM, CDMA-Forward CDMA channel, Reverse CDMA channel 06 Hrs

06 Hrs

06 Hrs

UNIT-6:

3G Overview, 3GPP Network Architecture, 4G features and challenges, Introduction to wireless LANs - IEEE 802.11 WLANs, Blue tooth, Wi-Max, Zigbee

TEXTBOOK

1	Wireless communications	2003.	Rappaport. T.S Pearson	Education
2	Wireless Communications	2007.	Andrea Goldsmith Cambrid	lge University Press
REF	ERENCES:			
1.	Fixed Broadband Wireless	2003.	HARRY R. ANDERSON	John Wiley –India
	System Design			
2.	3G Wireless Networks	2nd Edition, 2007	Clint Smith. P.E., and Daniel	Tata McGraw Hill
			Collins	
3.	Wireless Communication and	2007	Vijay. K. Garg, Morgan	Publishers,
	Networking		Kaufmann	http://books.elsevier.com/9780123735805
4.	Principles of Wireless Networks	2006.	Kaveth Pahlavan,. K. Prashanth	Prentice Hall of India,
			Krishnamuorthy	
5.	Wireless Communications and	2nd Ed., 2007.	William Stallings	Pearson / Prentice Hall of
	networks			India,

min	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards

Nagar Yuwak Shikshan Sanstha's
Yeshwantrao Chavan College of Engineerin

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

	II Semester									
E	ET2917	PE II: Selected	L=3	T=0	P=0	Credits=3				
	Evaluation	MSE-I	MSE-II	ТА	ESE	Total		ESE Duration		
	Scheme	15	15	10	60	100		3 hrs		

OB.IECTIVES

This course takes a unified view of the fundamentals of wireless communication and explains the web of concepts underpinning these advances at a level accessible to an audience with a basic background in probability and digital communication. Particular emphasis is placed on the interplay between concepts and their implementation in systems. UNIT-1:

Physical modeling for wireless channels: Free space, fixed transmit and receive antennas, moving antenna, Reflection from wall, Reflection from a ground plane, Power decay with distance and shadowing Moving antenna with multiple reflectors Input /output model of the wireless channel: linear time-varying system, Baseband equivalent model, A discrete-time baseband model, Degrees of freedom, Additive white noise Time and frequency coherence :Doppler spread and coherence time, Delay spread and coherence bandwidth. Statistical channel models :Rayleigh and Rician fading.

UNIT-2

Detection in a Rayleigh fading channel: Non-coherent and Coherent detection Time diversity Antenna diversity : Receive diversity, Transmit diversity, MIMO. Frequency diversity :Single-carrier with ISI equalization, Direct-sequence spread-spectrum 06 Hrs

UNIT-3

AWGN channel capacity Capacity of Flat: Fading Channels- Channel Distribution Information (CDI), Channel Side Information at Receiver, Channel Side Information at Transmitter and Receiver, Capacity with Receiver Diversity Capacity of Frequency: Selective Fading Channels-Linear time-invariant, Time-Varying Channels 06 Hrs

UNIT-4:

Multiplexing capability of deterministic MIMO channels : Capacity via singular value decomposition, Rank and condition number. Physical modeling of MIMO channels: Line-of-sight SIMO channel , Line-of-sight MISO channel , Antenna arrays with only a line-of-sight path ,Geographically separated antennas,Line-of-sight plus one reflected path Modeling of MIMO fading channels.

The V-BLAST architecture Fast fading MIMO channel: Capacity with CSI at receiver and Full CSI. Receiver architectures: Linear

UNIT-5

decorrelator, Successive cancellation, Linear MMSE receiver D-BLAST: an outage-optimal architecture, Coding across transmit antennas: D-BLAST.

UNIT-6:

Diversity-multiplexing tradeoff: Scalar Rayleigh channel, Parallel Rayleigh channel, MISO Rayleigh channel, 2x2 MIMO Rayleigh channel, nt xnr MIMO i.i.d. Rayleigh channel Universal code design for optimal diversity: multiplexing tradeoff - Universal code design for scalar channels, parallel channels, MISO channels, MIMO channels Uplink with multiple receive antennas: Space-division multiple access ,SDMA capacity region MIMO uplink:SDMA with multiple transmit antennas, Downlink with multiple transmit antennas MIMO downlink. 06 Hrs

Text books:

1	Fundamentals of Wireless Communications	2005	David Tse, Pramod Vis	wanath Cambridge University Press	
Refe	erence books:				
1	Coding for Wireless Channels	2007	E. Biglieri,	Springer,	
2	MIMO Wireless Communications	2007	E. Biglieri,	Cambridge University Press	
3	WIRELESS COMMUNICATIONS	2005	Andrea Goldsmith	Cambridge University Press	

mint	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &					
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards					

06 Hrs

06 Hrs

06Hrs

Nagar `	Yuwak Shikshan S	Sanstha's	
Yeshwantrao C	havan Colleg	e of Eng	ineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

II Semester									
ET2918		P	L=:	3	T=0	P=0	Credits=3		
Evaluation MSE-I MSE-II TA				ESE		Tota	al	ESE Duration	
Scheme		15	15	10	60		100)	3 hrs

OBJECTIVES: This course provide with an overview of speech communication in its wide ranging aspects, from a discussion of how humans produce and perceive speech to details of computer based speech processing for diverse communication applications.

UNIT-1: Speech Production

Human speech production mechanism, acoustic theory of speech production, Digital models for speech production.

UNIT-2: TIME DOMAIN MODELS FOR SPEECH PROCESSING

Introduction- Window considerations, Short time energy and average magnitude Short time average zero crossing rate ,Speech vs silence discrimination using Average energy and zero crossing, Pitch period estimation using parallel processing approach, The short time autocorrelation function, The short time average magnitude difference function, Pitch period estimation using the autocorrelation function. **06Hrs**

UNIT-3: FREQUENCY DOMAIN METHOD FOR SPEECH PROCESSING

Short Time Fourier analysis: Fourier transform and linear filtering interpretations, Sampling rates - Spectrographic displays - Pitch and formant extraction - Analysis by Synthesis - Analysis synthesis systems: Phase vocoder, Channel Vocoder -Homomorphic speech analysis: Cepstral analysis of Speech, Formant and Pitch Estimation, Homomorphic Vocoders.

UNIT-4: LINEAR PREDICTIVE CODING (LPC) ANALYSIS

Basic principles of Linear Predictive Analysis: The Autocorrelation Method, The Covariance Method, Solution of Lpc Equations: Cholesky Decomposition, Solution for Covariance Method, Durbin's Recursive Solution for the AutoCorrelation Equations, Comparision between the Methods of Solution of the LPC Analysis Equations, Applications of LPC Parameters: Pitch Detection using LPC Parameters, Formant Analysis using LPC Parameters.

UNIT-5: Speaker Recognition:

Issues in speaker recognition, Speaker verification vs identification, Text-dependent vs text-independent speaker recognition, Vector quantization models applications in speaker recognition, and Gaussian mixture modeling for speaker and speech recognition
06Hrs

UNIT-6: Discrete and Continuous Hidden Markov modeling for isolated word and continuous speech recognition, DTW.

hooks.				
	e	2002	T.F Quatieri	Pearson
Digital Processing of Speech Signals		1978.	L R Rabiner,	Pearson
Fundamentals of Speech Recognition		1993	L. Rabiner and B. Juang	Pearson
	2000	Dec	udeo O'Shouanooou	IEEE Press
	Digital Processing of Speech Signals	Discrete-time speech signal processing: Principles and Practice Digital Processing of Speech Signals Fundamentals of Speech Recognition rence books:	Discrete-time speech signal processing: Principles and Practice 2002 Digital Processing of Speech Signals 1978. Fundamentals of Speech Recognition 1993 rence books: 1993	Discrete-time speech signal processing: Principles and Practice 2002 T.F Quatieri Digital Processing of Speech Signals 1978. L R Rabiner, Fundamentals of Speech Recognition 1993 L. Rabiner and B. Juang rence books: 1900 1000

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards

06Hrs

07Hrs

06Hrs

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

II Semester									
ET2919	PE II: Detection and Estimation Theory					L=3	T=0	P=0	Credits=3
Evaluatio		MSE-I	MSE-II	ТА		ESE	Tota	I I	ESE Duration
Scheme	•	15	15	10		60	100		3 hrs

OBJECTIVES:

This course provides an introduction to the basic theory and techniques of signal detection and estimation. It provides essential background for engineers and scientists working in a number of fields, including communications, control, signal, and image processing, radar and sonar, radio astronomy, seismology, remote sensing, and instrumentation.

<u>UNIT-1:</u>

Review of Probability Theory; Stochastic Processes; Representation of Stochastic Processes;

UNIT-2:

Classical Detection and Estimation Theory Elementary hypothesis testing, Bayes rule, minimax rule, Neyman-Pearson rule; composite hypothesis testing. 06Hrs

06Hrs

06Hrs

06Hrs

UNIT-3

Detection of deterministic and random signals in Gaussian noise; Detection in non-Gaussian noise; Chernoff bound, asymptotic relative efficiency; sequential and distributed detection;

<u>UNIT-4:</u>

Estimation Theory: estimation of parameters, Random parameters: Bayes Estimates, Estimation of , Nonrandom parameters, Properties of Estimators, LMSE.

<u>UNIT-5</u>

Estimation of Waveforms: Linear MMSE Estimation of waveforms, Estimation of Stationary processes: Wiener filter, Estimation of Nonstationary processes: Kalman filter, Nonlinear estimation 06Hrs

UNIT-6:

Nonparametric detection, Locally optimal detection, Robust detection and estimation. **Applications of detection and estimation** Applications in diverse fields such as communications, system identification, adaptive filtering, pattern recognition. **06Hrs**

Text books:

1	Introduction to statistic Applications	cal Signal processing w	th 1989.	Srinath, Rajasekaran&Viswanathan	Prentice Hall of India, New Delhi
2	An Introduction to Estimation	Signal Detection a	nd 1994	H.V. Poor	2nd edition, Springer,
3	Fundamentals of Processing:Vols.1&2	Statistical Sig	nal 1993, 1998	S.M. Kay	Prentice Hall,

Reference books:

1	Detection, Estimation and Modulation Theory	1968.	. E.L. Van Trees	Wiley, New York,
2	Detection of signals in noise and estimation	1985	Shanmugam and Breipohl	John Wiley & Sons, New York
3	Signal processing: Discrete Spectral analysis, Detection and Estimation	1975	Mischa Schwartz and Leonard Shaw	Mc-Graw Hill Book Company

Chairperson Dean (Acad. Matters) Date of Release Version Sem 3 & 4 AY 2019-20 Onwards	mint	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

	II Semester									
ET2920		PE II: R	Real Time Operating	L=3	T=0	P=0	Credits=3			
-										
Evaluatio Scheme		MSE-I	MSE-II	ТА	ESE	Tota	I	ESE Duration		
		15	15	10	60	100		3 hrs		

Objective

The course objective is to cover the principles of real-time and embedded systems inherent in many hardware platforms and applications being developed for engineering applications. As part of this course, students will learn about real-time and quality of service system principles, understand real-time operating systems and the resource management and quality of service issues that arise, and construct sample applications on representative platforms.

UNIT-1:

Overview Of Commands, File I/O. (Open, Create, Close, Lseek, Read, Write), Process Control (Fork, Vfork, Exit, Wait, Waitpid, Exec), Signals, Inter Process Communication (Pipes, FIFOs, Message Queues, Semaphores, Shared Memory). 06 Hrs

UNIT-2:

Typical Real Time Application, Hard Vs Soft Real Time Systems, a Reference Model of Real Time Systems: Processors and Resources, Temporal Parameters of Real Time Workload, Periodic Task Model, Precedence Constraints and Data Dependency. 06 Hrs

UNIT-3

Functional Parameters, Resource Parameters of Jobs and Parameters of Resources Clock Driven, Weighted Round Robin, Priority Driven,	
Dynamic Vs State Systems, Effective Release Times and Dead Lines, Offline Vs Online Scheduling.	
06 Hrs	

UNIT-4:

Overview, Time Services and Scheduling Mechanisms, other Basic Operating System Function, Processor Reserves and Resource Kernel. Capabilities of Commercial Real Time Operating Systems. 06 Hrs UNIT-5

Introduction, Fault Causes, Types, Detection, Fault and Error Containment, Redundancy: Hardware, Software, Time. Integrated Failure Handling. 06 Hrs

<u>UNIT-6:</u>

Memory Managements Task State Transition Diagram, Pre-Emptive Priority, Scheduling, Context Switches – Semaphore – Binary Mutex, Counting: Watch Dogs, I/O System Process Management, Scheduling, Interrupt Management, and Synchronization.

06 Hrs

Text 1	books: Real Time Systems	1999	Jane W.S. Liu	Pearson
2	Real Time Systems		C.M.Krishna, KANG G. Shin	McGraw.Hill
Refe	rence books:			

1 Advanced Unix Programming

Richard Stevens

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &				
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards				

II Semester									
ET2921		Seminar			L	_=0	T=0	P=2	Credits=1
Evaluation MSE-I MSE-II TA ESE Total ESE Duration								ation	
Scheme			100			100)		

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards

			III Semeste	er				
ET2931	PE	III: Multimedia Commur		L= 3	T = 0	P	9 = 0	Credits = 3
Evaluation	MSE-I	MSE-II	ТА	ES	SE	Tota	al	ESE Duration
Scheme	15 15 10 60 100 3 Hrs							3 Hrs
 To ur To gra To ge 	arn the basics of in nderstand various asp basics of digita t acquainted with	nage & graphics data type Fundamental concepts in al audio various algorithms used dards used in image, vid	i video for multimedia da		sion			
data typ <mark>es, cor <u>JNIT-2:</u> Fundan</mark>	mputer image proc nental concepts in	ia , concept of non-temp essing: Image synthesis, video Types of video s / video, digital video : chi	analysis and tran ignals: componen	smission, p t, composite	opular file fo and s-video	rmats(GIF	, TIFF, JP	
	of digital audio: bund, MIDI, quantiz	zation and transmission o	f audio					06 Hrs
JNIT-4:								06 Hrs
DCT based, Ex JNIT-5: Video (ntrodction to vic compression sta JNIT-6: Audio (panded lossy DC compression deo compression, andards-MPEG-1, compression	d- JPEG- main steps in T based, Lossless and video compression base MPEG-2, MPEG-4, MPE les, , MPEG audio compr	hierarchical mod ed on motion com G-7	pensation, s	earch for mo	otion vecto	ors, detail	06 Hrs study of various video 06 Hrs
2 Multim		2004	Ze-Nian Li , Steinmetz, I			:	Springer	on Education
	edia Communicati ations, Networks, F	ons: Protocols and Standars	2001		Fred Halsal	I	Addiso	n-Wesley
Course Outcor Students will be								
2.Compression 3.Multimedia ne	formats and stand	a representations, includ lards for data, images, au ig QoS, VoIP, media-on-o I libraries	idio, and video, in	cluding both	lossless and	d lossy for	mats	
~~~	1	Ambapat	June 20	18	1.00	)	Sem	Applicable for 1 & 2 AY 2018-19 &
Chairp	person	Dean (Acad. Matters)	Date of Re	lease	Versi	on	Sem	3 & 4 AY 2019-20 Onwards



			III Sen	nester				
ET2932	ET2932 PE III: Active RF Devices and Circuits					T=0	P=0	Credits=3
Evaluation	MSE-I	MSE-II	Т	Δ	ESE	То	tal	ESE Duration
Scheme	15	15	10		60	10		3 hrs
transmission lines gain and noise fig	onent & their Modeling:	etic field analysis	s. Design micr	owave amplifi	ers and oscilla	ators based o	n stability,	bandwidth, power, JT & FET, Active
Circle , Test for U	ers - Types of amplific nconditional Stability, N lifier design- unilateral	1OSFETs , Equi [,]	valent circuit m	odel.				06 Hrs
circuits for amplifi <u>UNIT-4</u> Detectors - Point	•	parrier diodes. C	Characteristics a	and equivalent	circuit, Theor		·	06 Hrs
UNIT-5: Types of mixers. I and image rejection	Mixer theory and chara on mixers;	cteristics. SSB v	versus DSB mix	xers. Single-er	ided mixer and	d single-bala	nced mixer.	Double balanced 06 Hrs
	tor versus amplifier des cillators. Frequency tu				es of operation	n, Equivalent	circuit. Des	ign of Gunn diode <b>06 Hrs</b>
	equency and Microw alysis and Design	ave Communi	cation 2004	D. K. Misra		Jo	nn Wiley,	
2 Microwave 3. RF Circuits	Engineering s <b>Design</b>		1998	D. M. Poza Renhold I Bretchko	r _udwig and		nn Wiley entice Hall	
Reference books1MicrowaveDesign	: Transistor Amplifiers	Analysis and	1997.	G. Gonza	llez		Prentice	Hall
2 The Des Integrated	Circuits	dio-Frequency	Second Edition	Thomas I			CAMBRI	
Vol.II- Sem And Delay 4 Microwave	and Millimeter Wave F iconductor Line Phase Shifters, Circuit Design usin Fechniques,	·	1991 1990		and B. Bhat ndelin, A.M. de	Pavio and	Artech H	ouse

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 & Sem 3 & 4 AY 2019-20				
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Onwards				



III Semester ET2933 PE III: Soft Computing L=3 T=0 P=0 Credits=									
ET2933	PE II	II: Soft Comput	ing	L=3	L=3 T=0 P=0				
Evaluation Scheme	MSE-I	MSE-II	ТА	ESE	Total		ESE Duration		
	15	15	10	60	100	)	3 hrs		
<b>Objective</b> The objective is to have general understanding of soft computing methodologies including artificial neural networks, genetic algorithms, fuzzy sets and fuzzy logic systems. Develop computational neural network models and fuzzy models for engineering systems. <b>Jnit 1</b> Genetic algorithms: Population based search techniques, evolutionary strategies, mathematical foundations of genetic algorithms, search									
0	algorithms in function and c		, ,	,		0	aigorithms, searc 06 Hr		
Init 2 htroduction of neu	ral networks, NN Architectu	re Neural learnir	ng and laws, Applicat	ions of ANN Evaluatio	on of network	۲,			
upervised Learn	ning: rk: MP neuron, Perceptron, I	Percentron train	ing algorithm TMS a	laorithm ADALINE					
ingle layer netwo	ik. Mir fiedron, r creeption,	r creeptron train					06 Hi		
	k: Multilevel Discrimination			ng the parameter va	lues, Accele	erating the	learning Proces		
· ·							06 H		
nit 4 Insupervised Lea	arning: Winner Take Netwo	rk, Learning Veo	ctor Quantizer, ART N	letworks, self-organiz	ing feature r	naps, PCA	, Associate Model <b>06 H</b> r		
nit 5	Sets, Concepts of Fuzzy s	ets representa	tion of fuzzy sets ex	rtension principle fuz		ants t-nor	ms and t- conorm		
	ithmetic operation on interva				zy complime				
							06 Hr		
<b>nit 6</b> uzzy equations, f	uzzy relations, Fuzzy contr	ollers, Defuzzifi	cation Methods, Fuzz	y Inference Techniqu	es, applicatio	ons of fuzz	y logic 06 Hı		
Text books: 1 Neural ne	tworks	20	04 C. Mohan	and S. Ranka	1	² enram pu	blications		
_	ets and fuzzy logic, Th			Klir, Bo Yuan		PHI	-		
3 Neural Networks: A comprehensive foundation 1999 S. Haykin Pearson									
	Reference books: Introduction to artificial neural networks 1997 J. M. Zurada Jaico publishing								
		s 19	997 J. M. Zura	ada		Jaico pub	ishing		
1 Introductio						Jaico pub PHI	ishing		
<ol> <li>Introduction</li> <li>Artificial N</li> <li>Neural N</li> </ol>	on to artificial neural network	19 d Genetic 20	999 B. Yejnan			•	C		
I Introduction Artificial N Neural N	on to artificial neural network leural Networks etworks, Fuzzy Logic, an	19 d Genetic 20	999 B. Yejnan	arayana		PHI	Ū		

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &				
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards				



(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

III Semester										
ET2934	PE IV: High	Speed Networks	L=3	T=0	P=0	Credits=3				
Evaluation	MSE-I	MSE-II	ТА	ESE	Total	ESE Duration				
Scheme	15	15	10	60	100	3 hrs				

#### **OBJECTIVES:**

The main purpose of this course is to introduce students the important areas of communication networks, mainly Multistage networks. This will enable the students to acquire a solid understanding of foundations of networks technologies, systems, networks issues as well as economic deployment considerations, of networks technologies, systems, networks issues as well as economic deployment considerations.

#### UNIT-1:

Network services, Network Elements, Basic Network Mechanism, High Performance Networks, Traffic Characterization and quality of service, Applications, Layered Architecture. 06 Hrs

#### UNIT-2:

OSI and IP Models, Frame Relay, Internet Protocol, TCP and UDP, Performance of TCP/IP networks, Internet Success and Limitati	on 06 Hrs
<b>UNIT-3 :</b> Wireless Networks: Introduction, The wireless Channel, Link Level Design, Channel Access, Network Design	06 Hrs
UNIT-4: Control of Networks: Objectives and Methods of Control, Circuit-switched Networks, Datagram Networks, Mathematical Backgr Control Networks.	
UNIT-5:	06 Hrs

Introduction to Adhoc Wireless Networks, Issues, Routing approaches, Table-Driven of Routing Protocols, On-Demand Routing Protocols, Hierarchical routing Protocols. Ad hoc network security- Requirements, Issues and Challenges
06 Hrs
06 Hrs

#### UNIT-6:

SONET, Optical Links, WDM Systems, Optical Cross-Connects, Optical LANs, Optical Paths and Networks

## 06 Hrs

Тех	tt books:			
1	Computer Networking	2005	J.F.Kurose & K.W. Ross	Pearson
2	High-Performance Communication Networks	2e	Jean Warland Pravin Varaiya	Elsevier
Ref	erence books:			
1	Adhoc Wireless Networks	2005	C.Siva Ram Murthy & B.S.Manoj	Pearson Education, 2005.

mint	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards
	N N	COF NA TURK OF 25		



(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

	III Semester											
ET2935	PE IV	: Wireless Sensor N	L=3	T=0	P=0	Credits=3						
Evaluation Scheme	MSE-I	MSE-II	ТА	ESE	То	tal	ESE Duration					
Scheme	15	15	60	10	)0	3 hrs						

#### **OBJECTIVES:**

To expose the students the fundamental concepts of IP based wireless communication systems/networks. To impart students with Wireless/Mobile IP Architecture and Evolution; Performance and Quality of Service; Mobility, Routing, and Signaling; Real-Time Applications.

#### UNIT-1:

Introduction to sensors- Definition of sensor & its difference from transducer, Classification of sensors, application of sensors in various fields. Architecture-single node architecture-hardware components, energy consumption of sensor nodes, operating system and execution environments 06Hrs

#### UNIT-2:

Network architecture-optimization goal and figure of merit-design principles for WSN, service interface of WSN, Gateway concept challenges of WSN, comparison with other network.

06Hrs

06Hrs

06Hrs

#### UNIT-3

Wireless channel and communication fundamental, physical layer and transceiver design consideration in WSN.

#### <u>UNIT-4:</u>

MAC Protocols-Fundamental of MAC Protocol, low duty cycle protocol and wakeup concepts, schedule based protocols , Link layer protocols, routing protocols ,

#### UNIT-5

Naming and addressing, Time synchronization, Properties of Localization and positioning procedures, single hop localization, positioning in multihop environments, and impact of anchor placement.

#### UNIT-6:

Data centric routing, Data aggregation, Data centric storage, Topology control-controlling topology in a flat network, Hirarical network by dominating set, Hierarchical network by clustering, combining Hierarchical topologies and power control. 06Hrs

#### Text books: Protocols and architecture for Wireless Sensor 2007 Holger Karl, Andreas Willig, Wilev 1 Networks 2 2006 AzzedineBoukerche Chapman & Hall/CRC, 2006 Handbook of Algorithms for Wireless Networking and Mobile Computing **Reference books:** Wireless Sensor Network Designs, 2003 Wiley 1 Anna Hac 2 Wireless Sensor Networks : A systems 2005 NirupamaBulusu and Sanjay Jha Artech House, August perspective 2005. 3 Wireless Sensor Networks : Architecture and 2003 Jr., Edgar H. Callaway, Auerbach, 2003. Protocols Krishna Δ Wireless Sensor Networks 2005 C.S. Raghavendra, M. Springer, Sivalingam and TaiebZnati

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 & Sem 3 & 4 AY 2019-20
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Onwards



(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M. Tech. SoE & Syllabi 2018-19 – Communication Engineering

	III Semester											
ET2936 PE IV: Micro Electro Mechanical Systems L=3 T=0 P=0 Credits=								Credits=3				
Evaluatio	n MSE-I	MSE-II	TA		ESE	Tota		ESE Duration				
Scheme		15	10	60		60		100		3 hrs		

#### **OBJECTIVES:**

To give detail study of micro electronics circuit and various devices in the manufacturing process of MEMS.

To give brief introduction regarding various processes involved in the manufacturing of MEMS.

#### UNIT-1:

Intrinsic Characteristic of MEMS :- Energy Domains & Transducers. Sensors & Actuators. Introduction to Micro fabrication- silicon based MEMS processes. New Materials- Review of Electrical and Mechanical concepts in MEMS. Semiconductor devices- Stress & Strain analysis- Flexural beam bending, Torsional deflection 07Hrs

#### UNIT-2:

Electrostatic sensors- Parallel Plate capacitors, Applications, Interdigital Finger capacitor, Com drive devices, Thermal sensing and Actuation, Thermal Expansion, Thermal couples, Thermal resistors, Applications, Magnetic Actuators, Micro magnetic Components, Case studies of MEMS in magnetic actuators 06Hrs

#### UNIT-3

Piezoresistive sensors, Piezoresistive sensor materials, Stress analysis of mechanical elements, Applications to Inertia, Pressure, Acoustic, Tactile and Flow sensors, Piezoelectric sensors and actuators, Piezoelectric effects, Piezoelectric materials. 06Hrs

#### UNIT-4:

Silicon Anisotropic Wet Etching, Dry Etching of Silicon, Plasma Etching, Deep reaction Ion Etching (DRIE), Isotropic Wet Etching, Gas phase Etchants-Case studies, Basic surface micromachining processes, Structural and sacrificial materials, Acceleration of sacrificial Etch, Striction and Anistriction methods, Assembly of 3D MEMS, Foundry process 08Hrs

#### UNIT-5

Polymers in MEMS, Polimide, SU-8, Liquid Crystal Polymer(LCP), PDMS, PMMA, Parylene, Flurocarbon, Application to acceleration, Pressure, Flow and Tactile sensors 06Hrs

06Hrs

#### <u>UNIT-6:</u>

Optical MEMS, Lensens and Mirrors, Actuators for Active Optical MEMS.

Text 1	books: Foundations of MEMS	2006	Chang Liu,	Pearson Education Inc
Refei 1	rence books: An Introduction to Micro electro mechanical system design	2000	Nadim Maluf	Artech House
2	The MEMS Handbook	2000	Mohames Gad-el-Hak	CRDC press Baco Raton
3	MEMS & Micro systems Design and Manufacture	2002	Tai Ran Hsu,	Tata Mcgraw Hill, New Delhi.

and	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 &
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Sem 3 & 4 AY 2019-20 Onwards



III Semester											
ET2937	PROJECT PHASE - I L=0 T=0 P=16 Credits=								Credits=8		
Evaluation	MSE-I	MSE-II	TA	ES	E	Total		ESE Dur	ation		
Scheme			100			100					

### OBJECTIVES

As the project methodology for the batches is decided in the 2nd semester the student shall carry out the project work further 3rd semester. The project work consists of ;

- 1.
- Literature survey Study of processes /phenomenon related to project. 2.
- 3. Design of any equipment its fabrication and testing.

with	Antopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 & Sem 3 & 4 AY 2019-20
Chairperson	Dean (Acad. Matters)	Date of Release	Version	Onwards



(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M. Tech. SoE & Syllabi 2018-19 – **Communication Engineering** 

IV Semester										
ET2940	PROJECT PHASE – II         L=0         T=0         P=24         Credits=12									
· · · · · ·										
Evaluation	MSE-I	MSE-II	ТА	ESE	:	Total		ESE Dui	ration	
Scheme			40	60		100				

1. Review of work done in project phase I and final Design of any equipment, its fabrication and testing.

2. Critical analysis of design or process for optimization

3. **4.** Verification by experimentation.

In case of industrial project the necessary modifications with the proper design suggested to the industry should be explained. The letter from the industry should be attached in the report related to the performance of the student.

mit	Anthopat	June 2018	1.00	Applicable for Sem 1 & 2 AY 2018-19 & Sem 3 & 4 AY 2019-20 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	