

YESHWANTRAO CHAVAN COLLEGE OF ENGINEERING (An Autonomous Institution affiliated to R T M Nagpur University Nagpur) Accredited by NAAC (1stCycle) with 'A' Grade (Score 3.25 on 4 Point Scale)

Wanadongri, Hingna Road, Nagpur-441110

Department of Electrical Engineering (Minor in EV)

B.E. Minor in Electric Vehicles SoE & Syllabus 2021-22

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus B.E Minor in Electric Vehicles

SoE No. MIN-101

B.E Minor in Electric Vehicles Information Brochure of Minor Program

- 1. Title of Program: Minor in Electric Vehicles
- 2. Type of Program : Minor
- 3. Department offering the program: Electrical Engineering
- 4. Industry / Association / Collaboration:
 - Skywing Tech, Pune Kanta Height, First floor, Office No. 102 Sr. No. 3/21, opp. Sawata Mali Mandir, Narhe, Pune, Maharashtra 411041 Contact: 7775901215 http://www.skywingstech.com
 - TE connectivity Private Ltd, Bangluru.
 22B Doddenakundi, Second phase Industrial area Whitefield road, Bangluru,Karnataka,560048
 Contact:080-33195000
 www.te.com
- 5. Department/s eligible to opt for the program:

The students from CE, ME, EE, ETC, CT, IT, CSE are eligible to opt for this program. Department of Electrical Engineering students are not permitted to opt for the program.

6. General information about courses in program:

Theory courses dealt in this minor program:

- Electrical Machinery(transformer, generator, motor, special machines)
- Power Electronics(semiconductor devices, converters, inverters, choppers, voltage control methods)
- Electrical Drives(Drives and Speed Control, selection of motor for traction, PLC, digital speed control)
- Electric Vehicles(electro mobility, vehicle dynamics, energy storage system, hybrid power trains)
- Energy Storage and Systems(, Energy storage in electric vehicles, Battery Energy Storage System)

em	Mer .	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus B.E Minor in Electric Vehicles

SoE No. MIN-101

Practical courses dealt in this Minor program:

- Electrical Machinery
- Power Electronics
- Electrical Drives

7. Advance knowledge or research orientation of Program: NA

8. Employability potential of program:

CT, IT graduates	Developing algorithms for battery management system(BMS), making						
	IoT modules for sharing real-time data generated by EV, Use of AI to						
	improve the efficiency of BMS						
ME graduates Design of thermal system, vehicle and parts design and manufacturin							
EE and ETC	Developing firmware for BMS, developing infotainment system,						
graduates manufacturing and installing sensors in the vehicle, power electronic							
	component selection as per criterion for EV)						

9. Departmental Steering committee: For proper publicity / conduct of program

SN	Name of the	Post	Designation	e-mail ID	Contact
	Faculty Member				Number
1	Prof. P. S. Shete	Publicity	Assistant	pranay.shete85@gmail.com	9421779894
		Head	Professor		
2	Prof. S. L. Tiwari	Member	Assistant	shweta_tiwari200410@rediff.com	9422823380
			Professor		
3	Prof. P. B. Joshi	Member	Assistant	joshi_prasad27@yahoo.com	9975052397
			Professor		

10. Program Coordinator:

SN	Name of the Faculty	Post	Designation	e-mail ID	Contact
	Member				Number
1	Dr. S. G. Kadwane	Program coordinator	Professor	sgkadwane@gmail.com	9730459847

em	aller	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus B.E Minor in Electric Vehicles

SoE No. MIN-101

Scheme of Examinations Minor in Electric Vehicles

		G 1			Con	tact	Hou	ırs		% V	Veightag	ge	ESE
SN	Sem	Sub. Code	Subject	T/P	L	Т	Р	Hrs	Credits	MSEs*	TA**	ESE	Duration Hours
1	5	ELM101	Electrical Machinery	Т	3	0	0	3	3	30	30	40	3
2	5	ELM102	Lab: Electrical Machinery	Р	0	0	2	2	1		60	40	
3	5	ELM103	Power Electronics	Т	3	0	0	3	3	30	30	40	3
4	5	ELM104	Lab:Power Electronics	Р	0	0	2	2	1		60	40	
5	6	ELM111	Electric Vehicles	Т	3	0	0	3	3	30	30	40	3
6	6	ELM112	Electrical Drives	Т	3	0	0	3	3	30	30	40	3
7	6	ELM113	Lab: Electrical Drives	Р	0	0	2	2	1		60	40	
8	7	ELM121	Energy Storage Components and Systems	Т	3	0	0	3	3	30	30	40	3
			TOTAL :		15	0	6	21	18				

MSEs* = Three MSEs of 15 Marks each will conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment

TA ** = for Theory : 20 marks on lecture quizzes, 8 marks on assignments, 2 marks on class performance TA** = for Practical : MSPA will be 15 marks each

em	de	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus

B.E Minor in Electric Vehicles

SoE No. MIN-101

V Semester

ELM101	Electrical N	Aachinery		L= 3	T = 0	P = 0	Credits = 3	
Evaluation Scheme	MSE-I*	MSE-II*	MSE-III*	ТА	ESE	Total	ESE Duration	
*Best Two out of three MSE's would be considered	15	15	15	30	40	100	3 Hrs	
Prerequisites	Basic Electr	rical Engineeri	ng					
Course Objective:			Course Ou	tcome				
1. The basic p	principle of	transfer of	Students wi	will be able to				
 electrical pow of single and their classific phasor diagram 2. The basic operation, Pe steady state an DC electrical machines. 	three phase cation, com ns. principle, rformance c nalysis and a	transformers, nections and construction, characteristics, pplications of	 phase a evaluate of single 2. Explain types, or applicate perform 3. Explain operation 	nd auto-tre e vector d e phase an and ex- peration, ions of ance para and ex- on, startin	ransforme liagrams a nd three pl xamine p speed co DC m uneters of xamine p g, speed co	r. Develo and perfor hase trans principle, ntrol, cha achines d.c.mach principle, control , ap	construction racteristic and and evaluate	

Magnetic Circuit, magnetic field due to current carrying conductor and a coil, Right hand grip rule, Force on a current carrying conductor placed in a magnetic field, Flemings Left hand Rule, Magnetization curves of magnetic materials, Magnetic hysteresis and hysteresis loss, Eddy current and loss, leakage flux and fringing, Faraday's laws of electromagnetic induction, Lenz's Law, Flemings's Right hand rule, Types of induced EMF

UNIT II: TRANSFORMER:

Single Phase Transformer: Working principle. EMF equation. Construction of single phase transformer. Ideal transformer, Practical transformer, Transformer on load, Voltage Regulation.. Open circuit and Short circuit tests on transformer. Efficiency and condition for maximum efficiency. Autotransformer operation. All day efficiency (Only concept).

Three Phase Transformer: Types of 3 phase transformers, Construction, Polarity marking & Test, Transformer connections, Parallel operation of single and three phase transformers

/	em	April .	May 2021	1.00	Applicable for AY2021-22 Onwards
Cha	irperson	Dean (Acad. Matters)	Date of Release	Version	///_0_/ 0///////////////////////////

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus B.E Minor in Electric Vehicles

SoE No. MIN-101

UNIT III : UNIT 3: D.C. GENERATOR:

Construction, Magnetic structure, Field and Armature systems, Field and Armature windings (Both Lap and Wave Types), EMF Equation, Characteristics and applications of different types of D.C. Generators, Building of Emf in D.C. Shunt generator, Armature reaction, commutation

UNIT IV : D.C. MOTOR:

Principle, Torque Equation, Characteristics and applications of various types of D.C. Motors, Starting of D.C. Motors, Speed control of Series and Shunt motors, Power flow in DC machines, Losses and Efficiency in D.C. machines

UNIT V: INDUCTION MOTOR:

Three Phase Induction Motor:

Construction and types. Production of rotating magnetic field. Principle of operation. Torque of an induction motor. Condition for maximum torque. Torque – slip and torque speed characteristics. Applications of three phase induction motor. Starting, Speed control, Crawling and cogging,

Single Phase Induction Motor:

Double – field revolving theory of induction motor. Types of single phase induction motors. Comparison of single phase and three phase induction motor. Applications of single phase induction motor.

UNIT VI: SPECIAL MACHINES:

Induction Generator: Principle, isolated operation, double fed induction generator, applications Special Machines:

Introduction, Basic Theory and applications of BLDC motor, Switched Reluctance Motor (SRM), Permanent Magnet Synchronous Motor (PMSM)

Tex	t Books:			
	Title	Edition	Author	Publisher
1	Electrical Machines	2 nd -1993	Dr. P. K. Mukherjee and S. Chakravarti	DhanpatRai Publications (P) Ltd
2	Electrical Machines	3 rd -2010	I.J.Nagrath and Dr.D.P.Kothari	Tata McGraw Hill
3	Electric Machines	3 rd -2016	Ashfaq Husain	DhanpatRai Publications (P) Ltd.
Refe	erence Book:			
	Title	Edition	Author	Publisher
1	A textbook of Electrical Technology Volume II	2005	B.L.Theraja	S.Chand

Chairperson Dean (Acad. Matters) Date of Release Version	em	de	May 2021	1.00	Applicable for AY2021-22 Onwards
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	/o

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering

SoE and Syllabus B.E Minor in Electric Vehicles

SoE No. MIN-101

V Semester

ELM102 :	Lab: Elec	trical Machi	nery		L=0	T = 0	P = 2	Credits = 1		
Evaluation Scheme	MSPA 1	MSPA 2	MSPA 3	MSPA 4	TA*	ESE	Total	ESE Duration		
				-	60	40	100			
Prerequisites	Basic Elec	trical Engine	ering							
 power, operation, construction of single and three phase transformers, their classification, connections and phasor diagrams. The basic principle, construction, operation, Performance characteristics, steady state analysis and applications of DC electrical machines, and induction machines. Explain and examin types, operation, sp and applications of I performance parame Explain and examin operation, starting, s and evaluate the induction motors. To study Specia applications. 								ner. Develop liagrams and ase and three construction characteristics and evaluate achines construction ,application		
SN	SN NAM					IE OF EXPERIMENT				
1	To evaluate	the efficiency	y and voltag	age regulation of 1-phase transformer by load test						
2		the efficiend at and Short		oltage regulation of 1-phase transformer by Open sts				ner by Oper		
3	To analyze b	back to back t	test on two	o identical 1-phase transformers inding transformer into an autotransformer						
4	To understar	nd conversion	n of a 2-wir							
5 To apply phasing out and polarity n				narking on a 3-phase transformer						
6	6 To determine the voltage and cur transformer				rrent relations in a 3-phase, Delta-Star connected					
7	To analyze a	n Open Circu	uit and Sho	rt Circuit to	est on a 3-	phase tra	ansforme	r		
8	To determin	e the magnet	ization char	racteristic o	of a DC ge	enerator.				
((0)))		104	May		1.00		App			

em	- Alex	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus B.E Minor in Electric Vehicles

SoE No. MIN-101

To analyze the speed control of a DC shunt motor by varying
(a) field excitation and (b) armature voltage
To determine the load test on a DC shunt motor.
To determine the slip of a 3-phase induction motor by different methods
To analyse speed control of a 3-phase slip-ring induction motor by
(a) variation of a rotor resistance and (b) varying supply voltage
To determine the load test on a 3-phase induction motor by indirect loading.
To determine the direct loading of 3-phase induction motor by load test .
To evaluate the No-Load and Blocked rotor tests on a 3-phase induction motor.
To evaluate the No-Load and Blocked rotor tests on a 1-phase induction motor.
To determine the operation of an Induction generator.

Chairperson Dean (Acad. Matters) Date of Release Version	em	Apr	May 2021	1.00	Applicable for AY2021-22 Onwards
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus

B.E Minor in Electric Vehicles

SoE No. MIN-101

V Semester

ELM103	ELM103 Power Electronics			L=3	T = 0	P = 0	Credits = 3		
Evaluation Scheme	MSE-I*	MSE-II*	MSE-III*	ТА	ESE	Total	ESE Duration		
*Best Two out of three MSE's would be considered	15	15	15	30	40	100	3 Hrs		
Prerequisites									
Course Objective:	:		Course Ou	tcome					
,	the basics	of power	Students will be able to						
electronics.									
2) Understand	,		1) Demonstrate the learnings of various power						
IGBT, Concep and commutat		tion, inversion	semiconductor devices with their protection and apply them for various applications.						
			2) Analyse different Power Electronics Converter						
			circuits and choose them for suitable applications.						
					3) Demonstrate the knowledge of chopper circuits,				
			analyse and utilise them for different applications.						
			4) Analyse						
			techniques and identify their application						
UNIT I: SCR cor	nstruction, wo	orking and its o	characteristics	, SCR tur	n off meth	ods, ratin	gs, protection.		

UNIT I : SCR construction, working and its characteristics, SCR turn off methods, ratings, protection. Construction, working and characteristics of MOSFET and IGBT (in brief) ,TRIAC, Gate driver circuits

UNIT II : Single Phase AC to DC Converters

Single phase line commutated converters, single pulse converter, single phase bridge converter, effect of source inductance, effect of freewheeling diode, single phase half controlled rectifier

UNIT III : Three phase AC to DC Converters

Three phase three pulse converter, three phase bridge converter for resistive and inductive load. Application of converter in Electric Drives

UNIT IV : **D.C. Choppers**

Step down chopper, step up chopper, Control strategies, Multiphase choppers, Application of choppers

UNIT V: Inverters

Single phase half bridge and full bridge inverter, three phase bridge inverters 120^{0} and 180^{0} mode of conduction, Harmonics in output voltage waveforms

em	det	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus

B.E Minor in Electric Vehicles

SoE No. MIN-101

UNIT VI: Inverter output voltage control

Output voltage control, Harmonic attenuation by filters, Single pulse width modulation technique, multiple pulse width modulation technique, Sinusoidal pulse width modulation technique, Harmonic reduction by pulse width modulation techniques, analysis of single pulse width modulation, working of current source inverters, applications. Brief idea of Digital Control

Textl	Textbooks:								
S.N	TITLE	EDITION	AUTHOR	PUBLICATION					
1	PowerElectronics Circuit"s Devices And Applications	3rd Edition,2004	M.H.Rashid	Prentice Hall Limited					
2	PowerElectronics		D.Y.Shingare	Electrotech Publication Engineering Series					

Reference books:

5.N	TITLE	EDITION	AUTHOR	PUBLICATION
1	Power Electronics	1981	C.W.Lander	McGraw Hill
2	Thyristors Applications and their	2nd Edition 2002	Dr.M.Ramamoorty	East West Press
3	Thyristors and their Applications		Dr.G.K.Dubey, DoraldaSinha and Joshi	New Age International
4	Power Electronics	1989	Ned Mohan, T.M.Undeland, and W.P.Robbins	John Wiley and Sons

	em	Apr	May 2021	1.00	Applicable for AY2021-22 Onwards
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	
L					

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus B.E Minor in Electric Vehicles

SoE No. MIN-101

V Semester

ELM104	Lab: Powe	er Electronio	CS		L= 0	T = 0	P = 2	Credits = 1
Evaluation Scheme *Best Two out of three MSE's would be	MSPA 1	MSPA 2	MSPA 3	MSPA 4	TA*	ESE	Total	ESE Duration
considered					60	40	100	
2) Understand	the basics o SCR"s, M f rectifica	f power elect OSFET, UJ tion, invers	ronics. Γ, IGBT, ion and	 semico and app Analys circuits applica Demon circuits applica Analys 	ill be abl strate the nductor oly them e differents and tions. strate to s, analyse tions. e inver-	e learnin devices for vario nt Power choose he know e and util	with the us applica Electron them wledge ise them	ics Converter for suitable of chopper for different

S.N	TITLE								
1	To show V-I characteristics of SCR and measure holding and latching current of SCR.								
2	To estimate sensitivity of four modes operation of TRIAC								
3	To evaluate average dc voltage of single phase half wave rectifier with Resistive load.								
4	To show transfer and output characteristics of Power MOSFET.								
5	To show speed control of DC Shunt Motor with Semi Converter.								
6	To demonstrate single phase step d	own Cycloconverte	r with Resistive loa	ad <mark>.</mark>					
7	To demonstrate Forced Commutation methods of SCR.								
8	8 To evaluate RMS AC Voltage of single phase MOSFET based full Bridge inverter.								
Some May 2021 1.00 Applicable for									

em	Sport	May 2021	1.00	Applicable for AY2021-22 Onwards	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AT2021-22 Onwards	I

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus

B.E Minor in Electric Vehicles

SoE No. MIN-101

VI Semester

ELM111	Electric Ve	hicles		L= 3	T = 0	$\mathbf{P} = 0$	Credits = 3
Evaluation Scheme			MSE-III*	ТА	ESE	Total	ESE Duration
*Best Two out of three MSE's would be considered	15	15	15	30	40	100	3 Hrs
Prerequisites							
conventiona 4. To identify	onment he vehicle age systems e the per l hybrid pow	dynamics and formance of ertrains machines and	 a) Understand b) Anale dyna c) Understand vehie d) Sele 	Il be able erstand dards, driv lyze the umics and erstand the cles	the emis ve cycles parameter energy sto ne importa ic drive	rs involve brage syste ance of h	ed in vehicle

UNIT I : Electromobility and the Environment

Introduction of IC Engines, History of Electric Powertrain, History of Electric Car, Growing of Electric Powertrain, Energy sources of propulsion and emissions, carbon emission of fuels, Regulations of emissions, Impact of greenhouse gases, Heavy duty Vehicle Regulations, Drive cycles, Battery Electric Vehicle (BEV), fuel consumption, range and miles per gallon or equivalent (MPGe), Environmental Protection Agency (EPA) drive cycles, overview of conventional, battery, hybrid and fuel cell electric system

UNIT II : Vehicle Dynamics

Vehicle load forces, basic power, energy and speed relationships, aerodynamic drag and fuel consumption (numerical), rolling resistance (numerical), vehicle road-load coefficients, gradability, downgrade force and regenerative braking (numerical), vehicle acceleration, traction motor characteristics.

BLDC Motor

Equivalent circuit, forward and reverse mode operation of permanent magnet direct current (PMDC) machine (numerical), power loss and efficiency (numerical), maximum speed using PMDC (numerical).

em	de	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus

B.E Minor in Electric Vehicles

SoE No. MIN-101

UNIT III : Energy Storage Systems

Battery

Introduction to batteries, types and battery packs, operation and capacity rate (numerical), battery parameters and comparisons (numerical), battery size of BEV and Hybrid Electric Vehicle (HEV), (numerical), battery protection and management system, battery charging and discharging (numerical), operating curves.

Fuel Cells

Introduction, emission regulations, no-load and on-load voltages, full-load power and efficiency, characteristic curves, size of fuel cell (numerical), boost DC-DC converter, fuel economy of fuel cell electric vehicle (numerical).

UNIT IV : Conventional Hybrid Powertrains

Introduction to HEVs, brake specific fuel consumption (numerical), compare conventional, series, series-parallel hybrid system, fuel economy of series and series-parallel HEVs (numerical), use of planetary gear

UNIT V: Traction Machine

Four Quadrant operation, rated parameters (numerical), characteristic curves, constant torque and power mode, maximum speed mode.

UNIT VI: Induction Machine and DC-DC Converter Induction Machine

Magnetic field and flux density, space vector current and rotating magnetic field, machine model and steady state operation, motoring at rated speed using induction machine (numerical), variable speed operation, stall and start-up using induction machine (numerical), various tests (DC resistance, locked rotor and No-load test).

DC-DC Converter

Introduction, power conversion, basic topology, half-bridge buck-boost bidirectional converter and buck converter, buck converter in continuous conduction mode (CCM) and discontinuous conduction mode (DCM) operation (numerical), conduction losses of IGBT and diode, capacitor sizing (numerical), two-phase interleaved boost converter (numerical).

Text	Books:			
	Title	Edition	Author	Publisher
	Electric Powertrain-			
	Energy Systems,			
1	Power Electronics	2018		John Wilow & Song
I	and Drives for	2018	John G. Hayes	John Wiley & Sons
	Hybrid, Electric and			
	Fuel Cell Vehicles			

em	Ster	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	
		VCCE EL 42		

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus

B.E Minor in Electric Vehicles

SoE No. MIN-101

VI Semester

ELM112	Electrical I	Drives		L= 3	T = 0	P = 0	Credits = 3
Evaluation Scheme	MSE-I*	MSE-II*	MSE-III*	ТА	ESE	Total	ESE Duration
*Best Two out of three MSE's would be considered	15	15	15	30	40	100	3 Hrs
Prerequisites							
Course Objective: 1. After studying E subject elaborates a machines in industr 2. Characteristics u braking and speed o are explained. Prog contactors, traction	lectrical mach pplications o y. nder starting, control of diff rammable log	f different running ferent motors gic controller,	 motors to it drives. 2) Apply S adapting elemotor. 3) Categori application (4) Explain and compare 	Il be able and comp nterpret a Selection ectrical a ze and co of control the applic e and asse	oare charac pplication criteria f nd mecha compare co circuit. cations of l ess control	of moto for electri anical cha ontactors PLCs in e of electri	of AC and DC rs in electrical ical drives by aracteristics of and relays for lectrical drives cal drive. rs for traction

UNIT I : Introduction to Drives and Speed Control

Definition of a Drive, Classification of Drives, Brief idea about drives commonly used in industries, Types of Electrical braking, Speed Control of AC and DC motors.

UNIT II : Selection of motors

Selection of motors and bearings of motor: Power, Flywheel effect, Duty cycles of motor, transmission, enclosure systems for drives.

UNIT III: AC and DC contactor and relays

AC and DC contactor and relays: Limit Switches, magnetic structure, operation, control circuit for automatic starting and braking of DC motor and three phase induction motor

UNIT IV : Programmable Logic Controllers

Programmable Logic Controllers (PLC), programming methods, Ladder programming with few

Chairperson Dean (Acad. Matters) Date of Release Version	em	del .	May 2021	1.00	Applicable for AY2021-22 Onwards
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus

B.E Minor in Electric Vehicles

SoE No. MIN-101

examples, Applications of PLC's.

UNIT V: Traction motors

Traction motors: Motors in AC/DC traction and their performance and desirable characteristics, Speed

time characteristics of train,. Series parallel control, Starting and braking of traction motor.

UNIT VI: Digital speed control of Electric motors

Digital speed control of Electric motors, comparison with Analog method of speed control, Block Diagram arrangement for microprocessor based speed control of AC/DC motor, Flowcharts and algorithms for speed control and speed reversal of motor. Energy conservation in Electrical Drives

Text I	Books:			
S.N	TITLE	EDITION	AUTHOR	PUBLICATION
1	A Course in Electrical Power	1st-2005	Soni, Gupta, Bhatnagar	Dhanpat Rai and Company
2	Magnetic control of motors	Industrial New York 1947	Heumann	Chapman and Hall
3	Introduction to Programmable Logic Controllers	3rd Edition, 2008.	Gary Dunning	Cengage Learning

Refe	rence books:			
S.N	TITLE	EDITION	AUTHOR	PUBLICATION
1	Modern Electric Traction	4 th -2005	H. Pratap	DhanpatRai and Company
2	Modern utilization of traction motor	2003	J.B. Gupta	
3	A Textbook of Electrical Technology Volume III Transmission, Distribution, Utilization		B.L.Theraja, A.K.Theraja	S.Chand

Chairperson Dean (Acad. Matters) Date of Release Version	em	aler	May 2021	1.00	Applicable for AY2021-22 Onwards
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering

SoE and Syllabus B.E Minor in Electric Vehicles

SoE No. MIN-101

VI Semester

EL								T = 0	P = 2	Credits = 1
	luation eme	MSPA 1	MSPA 2	MSPA 3	5	MSPA 4	TA*	ESE	Total	ESE Duration
							60	40	100	
Pre	Prerequisite									
C	S	4.			C	0.4				
2.	Course Objective: 1. After studying Electrical machines this subject elaborates applications of different machines in industry.					ents will be Evaluate and heir working Categorize d Explain diffe To design la	able to l explain g ifferent type erent type	ypes AC a s limit sw	and DC co vitch, sense	ontactor
	S.N 1 To evaluate and explain the					ame of Exp		rter.		
	2 To evaluate and explain con)	
							Jinne sta		<i>')</i>	
	3 To explain function of side r				ary lim	it switch.				
4 To categorize different types contactors.										
	5 To classify and explain programming logic control (PLC) M-1200, M-1400 and I PLC.						400 and LOG			
	6 To make use of operating limit switch to turn ON contactor (output device).									
	7	7 To design ladder programming in PLC to control lamp.								
	8	To design	ladder prog	gramming	using	LOGO PLO	to contr	ol lamp.		
	9	To explain	n Implemen	tation of	timer u	ising LOGC	PLC.			
	10	To design	ladder prog	gramming	in PL	C to Contro	l of lamps	s in pre de	efined sec	quence.
	11	To design	a program	for Rever	sal of s	synchronous	s motor u	sing PLC		
	12	To make u	use of limit	switch, ar	nd sens	sors to turn	ON conta	ctor moto	or, lamp.	

em	de	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus

B.E Minor in Electric Vehicles

SoE No. MIN-101

VII Semester

ELM121	Energy Sto	rage Systems	5	L= 3	T = 0	P = 0	Credits = 3
Evaluation Scheme	MSE-I*	MSE-II*	MSE-III*	ТА	ESE	Total	ESE Duration
*Best Two out of three MSE's would be considered	15	15	15	30	40	100	3 Hrs
Prerequisites			-				
energy stora advancementTo Acquire	tudents to exp age systems, in ts and its app knowledge p vs to store ene	ts plications. ertaining to	 Explain storage. Analyse cells sto Illustrat 	Il be able e the func and applic electroch e the funct orage.	tions of er ations. emical and ion and us	d mechan se of flyw	ical energy

UNIT I : Introduction to Energy Storage for Power Systems: Role of energy storage systems, applications. Overview of energy storage technologies: Thermal, Mechanical, Chemical, Electrochemical, Electrical. Efficiency of energy storage systems. Storage in the Fuel Distribution System

UNIT II : Energy storage in electric vehicles: Classification of ES systems, Mechanical Energy storage, Hybrid storage systems for vehicles, issues and challenges

UNIT III : Electromagnetic Energy Storage: Introduction, Energy storage in capacitors, electrochemical charge storage mechanisms. Transient behaviour of a capacitor modelling, super capacitor technology.

UNIT IV :

Battery Energy Storage System: Fundamental concept of batteries, battery performance, charging and discharging of a battery, storage density, energy density, and safety issues Components of a Battery Energy Storage System, Battery Chemistry, : Low power and High-power Batteries, battery charging : constant voltage and constant current;

em	and the	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus

B.E Minor in Electric Vehicles

SoE No. MIN-101

UNIT V: Thermo-electricity, Thermo electric generators, Fuel cell, Use of power electronic converters in energy storage

UNIT VI: Energy storage systems supporting grid power and transportation, Hybrid systems, flywheel storage.

Text Books:								
	Title	Edition	Author	Publisher				
1	Energy storage	Vol. 406.	Huggins, Robert Alan	New York: Springer, 2010				
2	Energy Storage for Power Systems		Ter-Gazarian	Institution of Engineering and Technology, 1994.				

*In Laboratory courses TA=MSPA 1+MSPA 2+MSPA 3+MSPA 4= 60 marks

em	aler	May 2021	1.00	Applicable for AY2021-22 Onwards				
Chairperson	Dean (Acad. Matters)	Date of Release	Version					