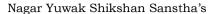


YESHWANTRAO CHAVAN COLLEGE OF ENGINEERING


(An Autonomous Institution affiliated to R T M Nagpur University Nagpur) Accredited by NAAC (1stCycle) with 'A' Grade (Score 3.25 on 4 Point Scale)

Wanadongri, Hingna Road, Nagpur-441110

Department of Electronics & Communications Engineering (Minor in DSP&ES)

B.E. Minor in DSP and Embedded System SoE & Syllabus 2021-22

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics & Telecommunication Engineering SoE and Syllabus B.E Minor in DSP and Embedded System

SoE No. MIN-101

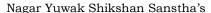
B.E Minor in DSP and Embedded System

Information Brochure of Minor Program

1. Title of Program: DSP and Embedded System

2. Type of Program: Minor

3. Department offering the program: **Department of Electronics &**Telecommunication Engineering


4. Industry Collaboration: First Impression Technology Ltd, Nagpur

5. Department/s eligible to opt for the program:

The students from **CE**, **EL**, **ME**, **CT**, **IT**, **CSE** are eligible to opt for this program. Department of Electronics Engineering and Electronics & Telecommunication Engineering students are not permitted to opt for the program.

- 6. General information about courses in program: (250 words)
 - ➤ In today's world embedded systems are very important and have applications in almost all fields of engineering. With the addition of "Digital Signal processing" (DSP) the human world has changed significantly finding its applications in automotive industry, consumer electronics, medical devices, defence and many.
 - ➤ It is necessary for any graduating engineer to know fundamental principles of designing embedded systems and digital signal processing.
 - ➤ The programme emphasizes the key aspects of both hardware and software of microcontrollers and their integration for development of real time applications. It introduces students to understand the process of development of embedded systems, from specifications to final marketable products.
 - > It exposes students to fundamentals of controllers, sensors and actuators used in embedded systems, various aspects of the design and development of hardware and software in an

Timbers.	Med.	May 2021	1.00	Applicable for AY2021-22 Onwards	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	A12021-22 Offwards	

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

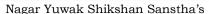
Department of Electronics & Telecommunication Engineering SoE and Syllabus B.E Minor in DSP and Embedded System

SoE No. MIN-101

embedded system, and basics of DSP. In the process they are expected to use knowledge and apply skills gained in their domain of engineering.

7. Employability potential of program:

The Program DSP and Embedded System teach the combination of customized hardware and software to carry out a specific set of tasks. We benefit from many embedded systems daily in our cars, medical devices, consumer electronics, and smart home appliances.


- Embedded System is the future. Every industry needs some artificial intelligence into it and artificial intelligence can be given by DSP & embedded systems only. No electronic product is without embedded systems in the market.
- ➤ Lot of career opportunities are available in DSP and embedded systems. Some of them are Embedded Software Engineer, System Software Engineer, Software Test Engineer. Embedded Hardware Engineer
- 8. Departmental Steering committee: For proper publicity / conduct of program

SN	Name of the Faculty	Post	Designation	e-mail ID	Contact
	Member				Number
1	Dr. M. S. Narlawar	HoD	Chairman BoS	hod_et@ycce.edu	9763822298
2	Dr. M.S. Dorle	Assistant	Co-ordinator	mdorle@gmail,com	9881711748
		Professor			
3	Prof.K.P.Kamble	Assistant	Member	kanchan_114@rediff	9422844074
		Professor		mail.com	
4	Prof.S.A.Desai	Assistant	Member	sad.ycce@gmail.com	9665759319
		Professor			

10. Program Coordinator:

SN	Name of the Faculty	Post	Designation	e-mail ID	Contact
	Member				Number
1	Dr. M.S. Dorle	Assistant	Co-	mdorle@gmail,com	9881711748
		Professor	ordinator		

Timbers.	May .	May 2021	1.00	Applicable for AY2021-22 Onwards	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	A 12021-22 Offwards	

SoE and Syllabus B.E Minor in DSP and Embedded System

SoE No. MIN-101

Scheme of Examinations B.E Minor in DSP and Embedded System

SN	Sem	Sub. Code	Subject	T/P	(Contact Hours		rrs Credits % Weightage		ge	ESE Duration		
		Couc			L	T	P	Hrs		MSEs*	TA**	ESE	Hours
1	5	ETM101	Analog Electronics	Т	3	0	0	3	3	30	30	40	3
2	5	ETM102	Digital Circuts and Fundamentals of Microprocessors	Т	3	0	0	3	3	30	30	40	3
3	5	ETM103	Analog and Digital Electronics Lab	p	0	0	1	2	1		60	40	3
4	6	ETM111	Embedded System	Т	3	0	0	3	3	30	30	40	3
5	6	ETM112	Digital Signal Processing	Т	3	0	0	3	3	30	30	40	3
6	6	ETM113	Simulation Lab	P	0	0	1	2	1		60	40	3
7	7	ETM121	Analog and Digital Communication	Т	3	0	0	3	3	30	30	40	3
8	7	ETM123	Analog and Digital Communication Lab	P	0	0	1	2	1		60	40	3
	TOTAL						0	3	18	18			

MSEs* = Three MSEs of 15 Marks each will conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment

TA ** = for Theory : 20 marks on lecture quizzes, 8 marks on assignments, 2 marks on class performance

TA** = for Practical : MSPA will be 15 marks each

Timbers.	Med.	May 2021	1.00	Applicable for AY2021-22 Onwards	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	A12021-22 Offwards	

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics & Telecommunication Engineering SoE and Syllabus B.E Minor in DSP and Embedded System

SoE No. MIN-101

V Semester ETM101: Analog Electronics

Course Objective

Students should be able to

- Understand modern analog circuits using integrated bipolar and field effect transistor technologies.
- 2) Understand basic principles of analog integrated circuit for analog IC design.
- 3) Learn operational amplifier basics, its parameters and its applications.
- 4) Understand Data converters and waveform generators

Course Outcome

Students will be able to

- 1) Understand fundamentals of OP-AMP.
- 2) Design and parametric analysis of error compensation network.
- 3) Design and analyze linear and non-linear OP-AMP applications.
- 4) Explore special function ICs and its applications.

UNIT-1: OPERATIONAL AMPLIFIER FUNDAMENTALS

Basic Op Amp Configurations, Open loop, Ideal Op Amp, Feedback in OPAMP circuit: Inverting, Non inverting, voltage follower. (06 Hours)

UNIT-2: OP AMP LIMITATIONS- STATIC and DYNAMIC

OPAMP parameters, Input Bias and Offset Current, Input Bias and Offset voltages, input offset error Compensation, open loop and closed loop Frequency response, Transient response.

(06 Hours)

UNIT-3: LINEAR APPLICATIONS

Summer, difference amplifier, integrator, differentiator, Current-to-Voltage Converter, Voltage-to-Current Converter, Voltage-to-Frequency Converter, Frequency -to-Voltage Converter, Transducer and Instrumentation Amplifier circuits, Industrial applications.

(06 **Hours**)

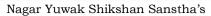
UNIT 4: NONLINEAR CIRCUITS

Precision Rectifiers, clipper, clamper, Voltage Comparators, Schmitt Triggers, Sample-and-Hold Circuits, Load Controlling circuits.

WAVEFORM GENERATORS

Sinusoidal Oscillators based on Wein bridge and RC Phase shift and Square wave generation, Triangular wave generator (06 Hours)

UNIT-5: ACTIVE FILTERS

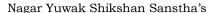

Transfer function, first order filter, standard frequency response, KRC Filters with variable gain and Unity Gain, Second order LPF & HPF Butterworth filter design, BPF and BRF (06 Hours)

UNIT 6: SPECIAL FUNCTION IC'S

Monolithic timers IC 555, Application circuits based on IC555, D-A Converters (DACs), A- D Converters (ADCs), Linear IC LM324.

(06 Hours)

There leaves.	Med.	May 2021	1.00	Applicable for AY2021-22 Onwards	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	A 12021-22 Offwards	



SoE and Syllabus B.E Minor in DSP and Embedded System

SoE No. MIN-101

Text	books:						
1	Design with Operational Amplifiers and Analog Integrated Circuits	2002	By Sergio Franco	McGraw-Hill			
2	Linear Integrated Circuits	2015	By D. Roy Chaudhari, Shail Jain	New Age International			
3	Op-Amps and Linear Integrated Circuits	2015	ByRamakant A. Gayakwad	Pearson			
Refer	Reference books:						
1.	Linear Integrated Circuits	2010	By S. Salivahanan, V. S. Bhaaskaran	McGraw-Hill			

Timbers.	Por	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	A 12021-22 Offwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics & Telecommunication Engineering SoE and Syllabus B.E Minor in DSP and Embedded System

SoE No. MIN-101

V Semester ETM102: Digital Circuits and Fundamentals of Microprocessor

	Course Learning Objective Students should be able to		Course Outcomes Students will be able to
1.	To learn digital logic families and minimization	1.	Simplify Boolean expressions using k-map &
	method.		tabulations method.
2.	Understand the concept of Combinational circuits	2.	Identify, formulate, and solve combinational logic
	using MSI and LSI chips		design problems.
3.	To Learn arithmetic circuits	3.	Understand the concepts of flip-flops, and it's
4.	To Know Synchronous, and Asynchronous counters		conversion from one flip-flop to another.
	and flip flops	4.	Design sequential logic circuits.
5.	To Study 8085 Microprocessor.	5.	Develop programs for 8085 microprocessor.
6.	To Study assembly language programming.		· ·

Unit - I [6 Hrs]

Introduction to Logic families & their characteristics. Fan-In, Fan-out, Propagation delay, Power dissipation, Noise Margin, CMOS inverter. BCD arithmetic, simplification of Boolean expressions, Implementations of Boolean expressions using logic gates, Karnaugh map, Quine McCaskey methods, Formation of switching functions from word statements.

Unit - II [5 Hrs]

Functions & implementation using Multiplexer, Demultiplexer, Encoder, Decoder. Combinational circuit analysis, Combinational circuits design using MSI and LSI chips, Code Converters.

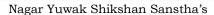
Unit - III [5 Hrs]

Design of Arithmetic circuits: Half & Full adders, Half & Full subtractors, Multibit parallel adders, Carry Propagate adder & Carry Look ahead adder, BCD Adder, Comparators, Multi bit Application designs, ALU

Unit - IV [6 Hrs]

Edge & Level triggers. Need for sequential circuits, Binary cell, Latches and flip-flops. RS-FF, D-FF, JK-FF, Master-Slave JK-FF & T-FF, Excitation & Truth Table, Flip-flop conversions, Shift registers, Synchronous and Asynchronous sequential Circuits. Counters Design, Ring counter.

Unit - V [7 Hrs]


Introduction to 8085 Microprocessor-Architecture, Addressing Modes, Instruction set, PIN configuration

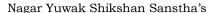
Unit - VI [7 Hrs]

8085 advanced instructions, Assembly language programming, Interrupts)

Te	Text books:						
1	Digital Design 3 rd edition 2007-06-15 M. Morris Mano, Pearson PH						
2	Microprocessor Architecture, Programming and Applications with the 8085, Ramesh Gaonkar ,Penram International Publications.						
Re	Reference books:						
1	Digital Circuits & Microprocessors 5 th edition, 2004 Hebert Taub Mc Graw Hill2						
2	Fundamentals of Digital Logic with VHDL Design 2 nd Edition, 2007 Stephen Brown & Zvonko Vranesic TMH						
3	Engg Approach to Digital Design 1 st edition(February 19, 1997)W. Fletcher PHI						

Timbleans.	Med.	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY2021-22 Onwards

SoE and Syllabus B.E Minor in DSP and Embedded System


SoE No. MIN-101

V Semester ETM103: Lab: Analog and Digital Electronics

Course Learning Objective Students should be able to			Course Outcomes Students will be able to	
1)	Understand basic principles of analog integrated	1)	Design and analyze linear and non- linear OP-	
	circuit for analog IC design.		AMP applications.	
2)	Learn operational amplifier basics, its parameters and its applications.	2)	Explore special function ICs and its applications Identify, formulate, and solve combinational logic	
3)			design problems. Design sequential logic circuits.	
4)			Develop programs for 8085 microprocessor.	

Expt. No.	Name of Experiment
1	OP-AMP as a inverting amplifier / non-inverting amplifier with frequency response
2	Study different OPAMP parameters: CMRR, Slew rate of OP-AMP
3	OP-AMP as an Integrator
4	OP-AMP as a Low pass filter
5	Bistable Multivibrator using IC 555
6	Design and Realization of Basic logic gates using Universal gates
7	Design of Adder and Subtractor
8	Design of Flip Flop
9	Design of Shift Resister
10	Design of Counter
11	Write a program to add two 8 bit numbers

Thereleans.	Por	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	A12021-22 Offwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoii Maharai Nagpur University)

Department of Electronics & Telecommunication Engineering SoE and Syllabus **B.E Minor in DSP and Embedded System**

SoE No. MIN-101

VI Semester ETM111: Embedded System

Course Learning Objective Students should be able to	Course Outcomes Students will be able to	
 To study & understand the detailed architectural features of Arduino IDE Overview To study the Elements of Arduino Board To explore the Arduino programming and types of Arduino Board To understand interfacing of various peripherals with Arduino Board 	 Explore the architectural features of Arduino IDE Overview. Explore various elements of Arduino Board. Develop programs in interfacing of different peripherals with ATMEGA328 P PU. Acquire knowledge about memory management in ATMEGA328 P PU. 	

UNIT-1 (06 Hours)

Introduction To Arduino: Arduino Installation, Arduino IDE Overview, Elements of Arduino Board, Types of Arduino Board, Block diagram of ATMEGA 328 P PU, On-chip flash program memory.

(06 Hours)

Introduction To Arduino Programming: Comments, Variables, Setup Function, Loop Function, Conditional Statements, Arrays, Important Header Files.

(06 Hours)

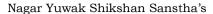
Introduction to NodeMCU, Insight Into ESP8266 NodeMCU Features & Using It With Arduino IDE, Installing the ESP8266 Core on Windows OS, ESP8266 NodeMCU Pinout, Power requirement, Serial Communication, Peripherals and I/O, Serial Communication.

(06 Hours)

Introduction to ESP 32, Differentiate between NodeMcu with ESP 32, ESP 32 Features & Using It With Arduino IDE, ESP 32 Pinout, Power requirement, Serial Communication, Peripherals and I/O, Serial Communication.

(06 **Hours**)

Memory Hierarchy, memory size and speed, on-chip memory, caches, cache design, memory management.


UNIT-6: (06 Hours)

Arduino Interfacing with peripherals Pin Mode Functions Input and Output In Arduino –LED With Arduino, LCD with Arduino, DC motor - forward and reverse, Ultrasonic Sensor With Arduino, Blinking and Fading an LED Using Arduino, Buzzer With Arduino, PIR Sensor With Arduino, Temperature Sensor With Arduino, Smoke and Gas Sensor in Arduino, Humidity sensor, LDR using Arduino, GPS With Arduino

Text Books:

Exploring Arduino: Tools and	2 nd Edition	by Jeremy Blum	Wiley; 2 edition
Techniques for Engineering Wizardry	October 24, 2019		(October 24, 2019)
2nd Edition			
Adventures in Arduino 1st Edition	1 st Edition May	by <u>Becky</u>	Wiley; 1 st Edition May
	4, 2015	Stewart	4, 2015
Reference Books			

There leaves.	Med.	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	A12021-22 Offwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics & Telecommunication Engineering SoE and Syllabus B.E Minor in DSP and Embedded System

SoE No. MIN-101

VI Semester ETM112: Digital Signal Processing

Course Learning Objective Students should be able to	Course Outcomes Students will be able to	
 Learn Signals and System. Understand discrete time signal and system Understand z transform and discrete Fourier transform and verify the properties Study the design of IIR and FIR digital filters 	 Differentiate Signals and System and perform sampling of signal. Analyse discrete time signal and system. Apply z transform and discrete Fourier transform and verify the properties. Design and implement digital IIR and FIR filters 	

Unit I: Signals, Systems and Signal Processing

(6 Hrs)

Basic Elements of Digital Signal Processing, Advantages, Classification of Signals, Concept of Frequency in Continuous time and Discrete time Signals, Sampling of Analog Signals

Unit II: Discrete Time Signals and Systems

(6 Hrs)

Elementary Discrete time signals, Classification of Discrete time signals, Input-output Description of System, Block diagram representation of discrete time system, Classification of discrete time system, Response of LTI system: Convolution.

Unit III: Z-transform (6 Hrs)

Z-transform, Properties of Z-transform, Rational Z-transform, Inverse z-transform by Power series expansion and partial fraction expansion, one sided z-transform, Transient and steady state response, Causality and stability

Unit IV: Discrete Fourier Transform (DFT)

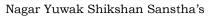
(6 Hrs)

Frequency Domain Sampling, DFT as Linear Transformation, Properties of DFT: Periodicity, Linearity, Symmetry, Circular Convolution, Time reversal, circular time shift and frequency shift, Parseval theorem

Unit V: IIR and FIR Filter Design

(6 Hrs)

Impulse invariant transformation, Bilinear transformation, IIR Butterworth and Chebyshev filter design, FIR filter design using windowing techniques

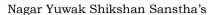

Unit VI: Digital Filter Structures

(6 Hrs)

Structure for the realization of Discrete time system, Structures for FIR System: Direct Form structures, Cascade Form structures, Linear Phase structures, Lattice structures, Structures for IIR System: Direct Form, Cascade, Parallel and transpose Form structures, Signal flow graph.

Text	Text books:					
1	"Digital Signal Processing - Principles, algorithms and applications"	4 th edition, 2013	John G. Proakis	McGraw-Hill		

There leaves.	Med.	May 2021	1.00	Applicable for AY2021-22 Onwards	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	A 1 202 1-22 Offwards	



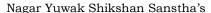
SoE and Syllabus B.E Minor in DSP and Embedded System

SoE No. MIN-101

2	"Discrete time Signal Processing"	3 rd edition 2010	Alan Oppenheim, Ronald Schafer and Buch	Pearson	
3	"Digital Signal Processing - A computer based approach," Publication	4 th edition, 2013	Sanjit K. Mitra,	McGraw-Hill	
Refer	Reference books:				
1	Digital Signal Processing	3 rd Edition	S Salivahanan	McGraw-Hill	
		2017	A Vallavraj		
			C Gnanapriya		

There leaves.	Mr.	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	A 12021-22 Offwards

SoE and Syllabus B.E Minor in DSP and Embedded System


SoE No. MIN-101

VI Semester ETM113: Simulation Lab

Course Learning Objective Students will be able to	Course Outcomes Students will be able to		
1) Learn Signals and System. 2) Understand discrete time signal and system 3) Understand interfacing of different peripherals with ATMEGA328 P PU	Differentiate Signals and System and perform sampling of signal. Analyse discrete time signal and system. Develop programs in interfacing of different peripherals with ATMEGA328 P PU.		

Expt. No.	Name of Experiment
1	Sampling of Continuous time signal
2	Illustration of Aliasing
3	Generation of Discrete time signals
4	Operation on Discrete time signals
5	To find circular convolution of two discrete time signals
6	Toggle LED connected to port pin of ATMEGA 328 P PU and Node MCU.
7	Display message on LCD using ATMEGA 328 P PU and Node MCU.
8	Interfacing Ultrasonic Sensor with ATMEGA 328 P PU and Node MCU.
9	Interfacing Temperature Sensor with ATMEGA 328 P PU and Node MCU
10	Interfacing Smoke and Gas Sensor with ATMEGA 328 P PU and Node MCU

Timbers.	Med.	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	A 1 2021-22 Offwards

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics & Telecommunication Engineering SoE and Syllabus B.E Minor in DSP and Embedded System

SoE No. MIN-101

VII Semester ETM121: Analog and Digital Communication

Course Learning Objective Course Outcomes	
Students should be able to	Students will be able to
1) Understand the fundamentals of amplitude & angle	1) Analyze different analog modulation techniques.
modulation schemes.	2) Analyze different types of noise.
2) Study different types of noise & discrete modulation	3) Analyze various Digital carrier systems
schemes	4) Describe and compare various Multiple access
3) Study different analog Pulse Modulation and digital	techniques
modulation schemes	5) Analyze and apply spread spectrum
4) Learn various Digital carrier systems	communication techniques for wireless
5) Study different Multiple access Techniques and	applications
spread spectrum communication techniques	

UNIT-I: Noise

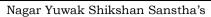
External noise, internal noise, Noise calculations, Noise figure, Noise température

(4 Hrs)

UNIT-II: Amplitude Modulation

Baseband signals; Modulation (Tone & message); Generation of AM and Demodulation, Double-sideband AM; Double-sideband suppressed carrier AM; AM bandwidth and AM modulation/demodulation, Single-sideband AM; Quadrature carrier multiplexing, Frequency division multiplexing (FDM); Super heterodyne receivers (7 Hrs)

Unit 3: Angle (phase & frequency) modulation: introduction; Waveform and bandwidth requirements compared to AM; Spectra of angle modulation, Narrowband angle-modulation case; Wideband angle- modulation, Generation of FM (and PM) signals; Armstrong's direct method of generation; Direct method of generation, Demodulation of angle-modulated signals: Time delay modulator, Slope detector and Balanced discriminator; Feedback demodulators, Interference in angle modulation; Pre-emphasis and de-emphasis; FM broadcasting; Super heterodyne FM receivers (7 Hrs)

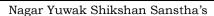

Unit 4: Analog pulse modulation; Sampling theorem and introduction to sampling, quantization and encoding, Pulse code modulation; Differential pulse code modulation; Delta modulation; Power spectral density; Eye diagrams and bit error rates, Introduction to Digital source coding **(6 Hrs)**

Unit 5: Digital carrier systems – ASK, PSK, binary PSK, FSK, QPSK, digital I/Q modulation, M-ary signaling and bandwidth efficiency, Introduction to channel coding (6 Hrs)

Unit 6: Multiple access techniques — Multiplexing (Frequency division multiplexing and Time division multiplexing); frequency domain multiple access, time division multiple access, code division multiple access and spatial division multiple access.

Introduction to spread spectrum communication (DSSS and FHSS); Examples of spread spectrum with Wi-Fi and Bluetooth, Orthogonal frequency division multiple access (OFDMA) applied to wireless communications (6 Hrs)

Timbers.	Med.	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	A12021-22 Offwards


SoE and Syllabus B.E Minor in DSP and Embedded System

SoE No. MIN-101

Te	xt books:			
1	Introduction to Analog and Digital communications	2 nd Edition	Simon Hykin and Michael Moher	Wlley Publishing, 2006
2	Analog and Digital Communications Theory and Lab Work	1 st edition	Abhay Gandhi	Cengage Learning Publishing, 2015.
3	Modern Analog and Digital Communication Systems.	3 rd Edition	B. P.Lathi	Oxford University Press, 2007

Refe	rence books:			
1	Electronic Communication Systems	-	Blake	Thomson Delmar Publications, 2002
2	Analog and Digital Communication System	3rd Edition	Martin S. Roden	Prentice Hall of India, 2002.
3	Wireless Communications: Principles and Practice	2 nd Edition	Rappaport T.S	Pearson Education, 2007
4	Principles of Communication	3 rd Edition	H.Taub, D L Schilling and G Saha	Pearson Education, 2007
5	Digital Communication Fundamentals and Applications	2 nd Edition	B.Sklar	Pearson Education 2007.
6	Advanced Electronic Communication Systems	6 th Edition	Wayne Tomasi	Pearson Education, 2009

Timbers.	Del	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	A12021-22 Offwards

SoE and Syllabus B.E Minor in DSP and Embedded System

SoE No. MIN-101

VII Semester ETM122: Lab: Analog and Digital Communication

Course Learning Objective	Course Outcomes		
Students will be able to	Students will be able to		
1) Understand the fundamentals of amplitude & angle	1) Analyze different analog modulation techniques.		
modulation schemes.	2) Analyze different types of noise.		
2) Study different types of noise & discrete modulation	3) Analyze various Digital carrier systems		
schemes	4) Describe and compare various Multiple access		
3) Study different Analog Pulse Modulation and digital	techniques		
modulation schemes	5) Analyze and apply spread spectrum		
4) Learn various Digital carrier systems	communication techniques for wireless		
5) Study different Multiple access Techniques and	applications		
spread spectrum communication techniques			

Expt. No.	Name of Experiment
1	Study of Amplitude Modulation and De-modulation
2	Study of Frequency Modulation and De-modulation
3	Generation of SSB-SC using balanced modulator
4	Generation of DSB-SC
5	Generation of Pulse Width modulation
6	Study of Sampling & reconstruction
7	Generation of Pulse code modulation
8	Generation of frequency shift keying
9	Study of Time Division Multiplexing
10	Generation of Delta Modulation

Elizaberry.	Det	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	A12021-22 Oliwalus