

YESHWANTRAO CHAVAN COLLEGE OF ENGINEERING (An Autonomous Institution affiliated to R T M Nagpur University Nagpur) Accredited by NAAC (1stCycle) with 'A' Grade (Score 3.25 on 4 Point Scale)

Wanadongri, Hingna Road, Nagpur-441110

Department of Electronics Engineering (Honors in VLSI Design)

B.E. Honors in VLSI Design SoE & Syllabus 2021-22

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus B.E Honors in VLSI Design

SoE No. HON-101

B.E Honors in VLSI Design Information Brochure of Honor Program

- 1. Title of the Program: B.E Honors in VLSI Design
- 2. Type of Program: Honor
- **3.** Department offering the program: Electronics Engineering
- 4. Industry / Association / Collaboration: Intel Corporation, Bangalore Cadence, Bangalore
- 5. Department/s eligible to opt for the program: The students of Department of Electronics Engineering are only permitted to opt for this program.
- 6. General information about courses in program:

This course will provide students with the ability to design state-of-the-art digital CMOS circuits. The course introduces students to what is becoming a fundamental design technique. The ability to design integrated circuits or to at least be able to analyze other designs is becoming a necessity for many computer engineering students entering the work force or pursuing an advanced degree. In addition, this course allows students to see how physically to implement some of the designs or design techniques they have learned in other classes. Very-large-scale integration (VLSI) is commonly known as chip-design. VLSI is a method that generates integrated circuits by integrating thousands of transistor-based circuits into a single chip. It can quickly search an application in Communications, DSP, MEMS, Microwave and RF, Consumer Electronics, Cryptography, Automobiles, Robotics, Space Applications and Health industry. Today, VLSI gadgets can be found all around us. We can find progressed VLSI contributions to our vehicles, mobile phones, electronic appliances, cameras, medicinal machines, and many different places. This rapidly growing sector is opening its doors in verification based employment opportunities for those with solid basics in electronic circuit structure and hardware description languages, VLSI designing and verification.

akame	aler	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) Department of Electronics Engineering SoE and Syllabus B.E Honors in VLSI Design

SoE No. HON-101

7. Advance knowledge or research orientation of Program:

This course introduces to the concepts and techniques of modern integrated circuit design. It also provides specialization in offering Verification of design, ASIC Design flow and concepts on advanced ASIC verification methodologies and technologies. VLSI Design Methodologies course is a front end VLSI course which imparts the VLSI Design Flow, Digital Design and RTL programming using Verilog HDL. This course starts with an overview of VLSI and explains VLSI technology, ASIC design, Moore's law and the difference between ASIC and FPGA. With this overview, it walks you through all the steps of complete VLSI Design flow and explains every step in detail. Then it covers the complete digital design, combinational, sequential designs. And finally it trains you extensively on Verilog HDL programming and makes you a hands-on RTL designer.

8. Employability potential of program:

With the development in electronic gadgets, higher technology like utilities, procedure geometries, and product innovation consistently, there is a constant requirement to design, build and re-make integrated circuits (ICs). Since devices like cell phones are being made with new features in a very short time. There is a high demand for skilled VLSI (Very Large Scale Integration) designers to take a shot at these products. Thus, there is a huge demand for qualified VLSI professionals in semiconductor industry. Use of computer aided design (CAD) tools for circuit design and simulation enables the students to grab the opportunity in VLSI designed based Industries like Intel Semiconductors, Tessolve Semiconductors, Texas Instruments, Wipro, IBM, NXP, Cypress, Broadcom, Qualcomm, ST Micro, AMD, Avago Tech etc.

SN	Name of the	Post	Designation	e-mail ID	Contact
	Faculty Member				Number
1	Dr. P. T. Karule	Chairman	Prof. & Head	ptkarule@gmail.com	9764996490
2	Dr. S. V. Rathkanthiwar	Member	Professor	svr_1967@yahoo.com	9764996797
3	Dr. A. S. Khobragade	Member	Professor	atish_khobragade@rediffmail.com	9765005110
4	Dr. R. D. Thakre	Member	Professor	rdt2909@gmail.com	9423603236

9. Departmental Steering committee: For proper publicity / conduct of program

Grand	aller	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AT2021-22 Offwarus

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus

B.E Honors in VLSI Design

SoE No. HON-101

10. **Program Coordinator:**

SN	Name of the Faculty	Post	Designation	e-mail ID	Contact
	Member				Number
1	Vilas Alagdive	Coordinator	Asst.Professor	vilas_a23@rediffmail.com	7768842506

CH	and	de	May 2021	1.00	Applicable for
С	hairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus B.E Honors in VLSI Design

SoE No. HON-101

Scheme of Examinations B.E Honors in Honors in VLSI Design

		C1-			Co	ntac	t H	ours		% V	Veighta	ge	ESE
SN	Sem	Sub. Code	Subject	T/P	L	Т	Р	Hrs	Credits	MSEs*	TA**	ESE	Duration Hours
1	5	EEH131	Synthesis & Optimization of VLSI Circuits	Т	3	0	0	3	3	30	30	40	3 Hours
2 5 EEH132 Advanced Digital System Design			Т	3	0	0	3	3	30	30	40	3 Hours	
3	5	EEH133	Lab: Advanced Digital System Design	Р	0	0	2	2	1		60	40	
4	6	EEH141	VLSI Testing	Т	3	0	0	3	3	30	30	40	3 Hours
5	6	EEH142	Digital IC Design	Т	3	0	0	3	3	30	30	40	3 Hours
6 6 EEH143 Lab: Digital IC Design			Р	0	0	2	2	1		60	40		
7	7	EEH151	Low Power CMOS VLSI Design	Т	3	0	0	3	3	30	30	40	3 Hours
8	7	EEH152	Lab: Low Power CMOS VLSI Design	Р	0	0	2	2	1		60	40	
	TOTAL					0	6	21	18				

MSEs* = Three MSEs of 15 Marks each will conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment

TA ** = for Theory : 20 marks on lecture quizzes, 8 marks on assignments, 2 marks on class performance

TA** = for Practical : MSPA will be 15 marks each

akam	aller	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus

B.E Honors in VLSI Design

SoE No. HON-101

5th Semester Synthesis & Optimization of VLSI **EEH131** L=3T = 0 $\mathbf{P} = \mathbf{0}$ Credits = 3Circuits ESE Evaluation Scheme MSE-I* MSE-II* MSE-III* TA **ESE** Total Durat *Best Two out of ion three MSE's would 15 15 100 3 Hrs be 15 30 40 considered **Prerequisites Course Objective Course Outcome** Students should be able to Students will be able to 1. Acquaint concept of Optimization of 1. Understand basic Boolean functions, their Very Large Scale Integration (VLSI) representations and different CAD based synthesis and circuit and systems design. optimization issues. 2. Understand, able to analyze and solve the algorithms underpin behavioral synthesis including which scheduling, allocation and binding. Understand and able to analyze high level synthesis 3. issues, two level logic optimization, multilevel logic optimization, and sequential logic optimization. 4. Understand and able to apply the Satisfiability (SAT) concept.

UNIT I :

Microelectronics, semiconductor technologies and circuit taxonomy, microelectronic design styles, computer aided synthesis and optimization. Graphs Notation, undirected graphs, directed graphs, combinatorial optimization, Algorithms, tractable and intractable problems, algorithms for linear and integer programs, graph optimization problems and algorithms, Boolean algebra and Applications

UNIT II :

Hardware Modeling Languages, distinctive features, structural hardware language, Behavioral hardware language, HDLs used in synthesis, abstract models, structures logic networks, state diagrams, data flow and sequencing graphs, compilation and optimization techniques.

UNIT III :

Logic optimization, principles, operation on two level logic covers, algorithms for logic minimization, symbolic minimization and encoding property, minimization of Boolean relations. Multiple level combinational optimizations: Models and transformations

UNIT IV :

Combinational networks, algebraic model, Synthesis of testable network, algorithm for delay evaluation and optimization, rule based system for logic optimization. Sequential circuit optimization, Sequential circuit optimization using state based models, sequential circuit optimization using network models.

Chairperson Dean (Acad. Matters) Date of Release Version	akan	Ster	May 2021	1.00	Applicable for
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus

B.E Honors in VLSI Design

SoE No. HON-101

UNIT V:

A model for scheduling problems, Scheduling with resource and without resource constraints, Scheduling algorithms for extended sequencing models, Scheduling Pipe lined circuits. Cell library binding, Problem formulation and analysis, algorithms for library binding, specific problems and algorithms for library binding (lookup table F.P.G.As and Antifuse based F.P.G.As), rule based library binding.

UNIT VI:

Simulation, Types of simulators, basic components of a simulator, fault simulation Techniques, Automatic test pattern generation methods (ATPG), design for Testability (DFT) Techniques.

Text	Books:				
	Title	Edition	Author	Publisher	
1	Synthesis and Optimization	1 st Edition	Giovanni De	Tata McGraw Hill 2003	
1	of Digital Circuits	1 St Edition	Micheli	Tata McGraw-IIII, 2005	
Refer	ence Book:				
	Title	Edition	Author	Publisher	
			Srinivas Devadas		
1	Logic Synthesis	1 st Edition,	Abhijit Ghosh,	McGraw-Hill, USA, 1994.	
			and Kurt Keutzer		

	change det	May 2021	1.00	Applicable for
Chairperson Dean (Acad. Matters) Date of Release Version	Chairperson Dean (Acad. Matters)	Date of Release	Version	

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus B.E Honors in VLSI Design

SoE No. HON-101

5th Semester

EEH132	Advanced 1	Digital Systen	n Design	L= 3	T = 0	P = 0	Credits = 3
Evaluation Scheme	MSE-I*	MSE-II*	MSE-III*	ТА	ESE	Total	ESE Duration
*Best Two out of three MSE's would be considered	15	15	15	30	40	100	3 Hrs
Prerequisites							
Course Objective			Course Outcome				
Students should be		Students will be able to					
1. Expose stu	e advanced	1. Design and analyse combinational and sequential					
design tech	niques and r	nethodology	logic circuits.				
and industri	al standard E	DA tools in	2. Understand hardware description language and				
Digital Circ	able to differe	design a nt abstrac	nd simula tion levels	te digital	systems using		
			3. Understand and apply timing issues in multiple contexts and design the circuit.				
			4. Understand programmable devices and able to				
			design digital systems using modern design tools				design tools
LINUT L.			U	<u> </u>		-	2

UNIT I :

Digital Design Fundamentals, Combinational & Sequential design issues, Introduction to finite state machines, Moore & Mealy Machine, Introduction to programmable devices, PLA, PAL, PROM, Structure of CPLDs, Introduction to FPGA, Architecture, CLB, IOB, Programmable Interconnect Points, Different type of programmable switches used in PLDs.

UNIT II :

HDL Based Design flow, Requirements of HDL, Design Methodologies, Different Modelling styles, Introduction to Verilog, Elements of Verilog, Verilog Module definition, Elements of Module.

UNIT III :

Basic Concepts in Verilog, Reserved Keywords, Syntax & Semantics, Comments, Identifiers, Number Representation, System Representation, Verilog Ports, Verilog Data Types, Wire & Variables, Physical & Abstract, Constants, Parameter, Verilog Data Operators, Design entry in Verilog & Testbench, Compilation and synthesis, Timing analysis

UNIT IV :

Data Flow Modelling, Delay, Continuous Assignment, Delayed Continuous assignment, Structural Modelling Feature, Module Instantiation, Gate level Primitives, Gate Delays, Switch Level Primitives, User Defined Primitives.

Chairperson Dean (Acad. Matters) Date of Release Version	akan	Ster	May 2021	1.00	Applicable for
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering

SoE and Syllabus

B.E Honors in VLSI Design

SoE No. HON-101

UNIT V:

Behavioral Modelling, Initial, Always, Procedural Assignment, Blocking and Non- Blocking assignments, Sequential & Parallel Blocks, Race around Condition, Timing Control, Procedural Statements, Conditional Statements if case loop repeat forever etc, Zero Delay Control, Event Based Timing Control, Compiler Directives, Assign Deassign, Force Release, Latch Models, FF Models, State Machine Coding ,Moore and Mealy Machines.

UNIT VI:

Combinational & sequential system Design examples like Shift Registers, Counters, LFSR, Stacks and Queues, Multi bit Adders & Multiplier, Huffman Coding, Processor and Memory Model, CPU, System Tasks and Functions, Design Verification.

Text Books:							
	Title	Edition	Author	Publisher			
	Verilog HDL : A Guide to						
1	Digital Design and	, 2 nd Edition	Samir Palnitkar	2003			
	Synthesis						
Reference Book:							
	Title	Edition	Author	Publisher			
1	Verilog Digital System	Second	Zainalabedin	Tata MaCrow Hill 2000			
I	Design	Edition	Navabi	Tata McGraw Hill, 2009			

akan	de	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoF and Syllabus

SoE and Syllabus B.E Honors in VLSI Design SoE No. HON-101

5th Semester

EEH133 Lab: Advanced Digital Sy Design			ystem	L= 0	T = 0	P = 1	Credits = 1
Evaluation Scheme	MSE-I*	MSE-II*	MSE-III*	ТА	ESE	Total	ESE Duration
*Best Two out of three MSE's would be considered				60	40	100	3 Hrs
Prerequisites							
Course Objective			Course Outcome				
Students should be	able to		Students will be able to				
1. Expose student	ts to the adv	anced design	1. Design and analyse combinational and sequential				
techniques a	nd method	lology and	logic circuits.				
industrial stand	lard EDA too	ols in Digital	2. Understand hardware description language and				
Circuits and Systems design			able to design and simulate digital systems using different abstraction levels				
			3. Understand and apply timing issues in multiple contexts and design the circuit.				
			4. Understand programmable devices and able to				
			design digital systems using modern design tools				
			·				

SN	Experiment Name				
1.	Verilog Code using Bitwise Operator .Test it with test stimuli generated by test bench				
2.	Using GATE level primitive write verilog code and test it with test stimuli generated by test				
	bench				
3.	Verilog code using DATA flow modelling style. Test it with test stimuli generated by test				
	bench				
4.	Write verilog code using conditional assignment statement. Test it with test stimuli generated				
	by test bench				
5.	Write verilog code using Structural Modeling style. Test it with test stimuli generated by test				
	bench				
6.	Verilog code using Behavioural modeling style. Test it with test stimuli generated by test				
	bench				
7.	Write UDP for A. Combinational Circuit B.Sequential circuit				
8.	Write Verilog code using switch level modeling for a. NAND gate b. Full adder using				
	transmission gate				
9.	Write verilog code using while loop				
10.	Write Verilog code for Mealy and Moore sequence detector.(using overlapping allowed and				
	not allowed)				

	cham!	ale	May 2021	1.00	Applicable for			
	Chairperson	Dean (Acad. Matters)	Date of Release	Version				
_								

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus

B.E Honors in VLSI Design

SoE No. HON-101

Text	Books:			
	Title	Edition	Author	Publisher
	Verilog HDL : A Guide to			
1	Digital Design and	, 2 nd Edition	Samir Palnitkar	2003
	Synthesis			
Refe	ence Book:	·		-
	Title	Edition	Author	Publisher
1	Verilog Digital System	Second	Zainalabedin	Toto McGrovy Hill 2000
I	Design	Edition	Navabi	Tata McGraw Hill, 2009

	akan	Mer -	May 2021	1.00	Applicable for			
	Chairperson	Dean (Acad. Matters)	Date of Release	Version				
-								

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus

B.E Honors in VLSI Design

SoE No. HON-101

6th Semester

					1	1	
EEH141	VLSI Testi	ng		L= 3	T = 0	$\mathbf{P} = 0$	Credits $= 3$
Evaluation Scheme	MSE-I*	MSE-II*	MSE-III*	ТА	ESE	Total	ESE Duration
*Best Two out of three MSE's would be considered	15	15	15	30	40	100	3 Hrs
Prerequisites							
Course Objective			Course Outcome				
Students should be	able to		Students will be able to				
1. Gain a kno	wledge from	the area of	1. Develop an understanding of VLSI design				
applying di	agnostic prin	ciples in the	verification and testing issues.				
design of modern Electronic systems			 Learn how to generate test patterns for faults in a system and how to design a system for testability. Model different faults and carry out fault simulation in digital circuits. 				
			4. Know in VL	about in SI circuits	nportance S.	of testing	g and its types

UNIT I :

Overview Of Testing: Design Process, Verification, Faults & Their Detection, Test Pattern Generation, Fault Coverage, Types Of Tests, Test Application, Testing Economics. Defects, Failures, and Faults: Physical

Defects, Failures Modes, Faults, Fault Equivalence and Dominance, Fault Collapsing

UNIT II :

Design Representation: Graphical representation, Graphs, Binary Decision diagrams, Netlists, VLSI Design Flow: CAD tools, Design Methodologies, Semicustom Design

UNIT III :

Simulation: Logic Simulation, Approaches to Simulation, Fault Simulation & Their Results. Automatic Test Pattern Generation: D-Algorithm, Critical Path Extensions to D-Algorithm PODEM

UNIT IV :

Ad Hoc Techniques, Scan–Path Design, Test pattern generation, Test Pattern Application, Scan architectures, multiple scan chains, Partial Scan Testing

UNIT V:

Boundary-Scan Testing: Boundary Scans Architecture, Test Access Port, Registers, Tap Controller, Modes of Operation. Built In Self Test: Pseudorandom Test Pattern Generation, Response Compaction, BIST Architectures

Chairperson Dean (Acad. Matters) Date of Release Version	akan	de	May 2021	1.00	Applicable for
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering

SoE and Syllabus

B.E Honors in VLSI Design

SoE No. HON-101

UNIT VI:

Memory Testing: Types of Memory Testing, Functional Testing Schemes, Testing FPGAs and Microprocessors: Testability Of FPGAs, Testing RAM- Based FPGAs, Testing Microprocessors, Synthesis For Testability

Text Books:						
	Title	Edition	Author	Publisher		
1	Essentials of Electronic Testing for Digital, Memory, and Mixed-Signal VLSI Circuits	2 nd Edition 2003	MichaelL.Bushnell and Vishwani D. Agrawal,	B.S.Publications		
2	HDL Chip Design	3rd Edition2008	Douglas Smith	Doone Publications		
Reference Book:						
	Title	Edition	Author	Publisher		
	,	2nd				

	Title	Edition	Author	Publisher
1	A Guide to VHDL	2nd Edition2007	Stanley Mazor	Kluwer Academic Pres

cham_	de	May 2021	1.00	Applicable for			
Chairperson	Dean (Acad. Matters)	Date of Release	Version				

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus

B.E Honors in VLSI Design

SoE No. HON-101

		(5 th Semester				
EEH142	Digital IC l	Design		L= 3	T = 0	$\mathbf{P} = 0$	Credits = 3
Evaluation Scheme	MSE-I*	MSE-II*	MSE-III*	ТА	ESE	Total	ESE Duration
*Best Two out of three MSE's would be considered	15	15	15	30	40	100	3 Hrs
Prerequisites							
Course Objective			Course Outc	come			
Students should be	able to		Students will	be able to)		
1. Understand	1. Demonstrate issues related to the development of						
the area of	digital i	integrated	circuits	includin	g fabrication,		
circuits, u	circuit de	esign, imp	lementatio	on method	lologies		
currently us	able VLSI ch	ips.	2. Solve co	omplex ci	rcuit prol	olems and	l optimization
			technique	es			_
			3. Design design	CMOS	combinati	onal, sec	quential logic
			4. Design p	rogramma	able logic	arrays	

UNIT I:

MOS transistors, CMOS logic, NAND gate, combinational logic, NOR gate, Compound gates, Pass transistor and transmission gates, tristates, multiplexers, latches and flip flops, inverter cross section, fabrication process, Layout design rules, CMOS processing technology, CMOS Process enhancements, stick diagram, VLSI design flow ,Euler path in a CMOS gate.

UNIT II :

MOS transistor theory, Working of NMOS enhancement transistor & PMOS enhancement transistor, Ideal Current voltage characteristics, threshold voltage, non-ideal current voltage effects, velocity saturation, mobility degradation, channel length modulation, Body effect, sub-threshold conduction, Junction leakage, Tunneling, Temperature dependence, Geometry dependence, Small signal AC characteristics, CMOS inverter DC transfer characteristics, Beta ratio effects, noise margin, Ratioed inverter transfer function, switch level RC delay models

UNIT III :

Delay estimation, RC delay models, linear delay model, logical effort, parasitic delay, Delay in a logic gate, delay in a multi stage logic networks, power dissipation, interconnect, design margin, Reliability, Scaling

UNIT IV :

Circuit families, static CMOS, Ratioed circuits, Cascode voltage switch logic, dynamic circuits, pass transistor circuits, differential circuits, sense amplifier circuits, Bi-CMOS circuits

Chairperson Dean (Acad. Matters) Date of Release Version	akan	april .	May 2021	1.00	Applicable for
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus

B.E Honors in VLSI Design

SoE No. HON-101

UNIT V:

Sequencing static circuits, Sequencing methods, Max-delay constraints, Min-delay constraints, Time borrowing, clock skew, circuit design of latches and Flip flops, static sequencing element methodology, Two phase timing types, characterizing sequencing element delays, sequencing dynamic circuits, Synchronizers

UNIT VI:

Static Random access memory, Dynamic random access memory, serial access memories, Content addressable memory Programmable logic arrays.

Text	Books:				
	Title	Edition	Author		Publisher
	CMOS VLSI design:	A			Addison Wesley
1	Circuits and System	¹⁸ 3rd Edition	Neil H. E. Weste	, David	Publication, 2008
-	Perspective		F. Harris, A.Bane	erjee,	1 40110441011, 2000
Refer	ence Book:				
	Title	Edition	Author		Publisher
	CMOS Digital Integrated		Sung Mo Kong	MaGrou	Uill Dublications
1	Circuits: Analysis and	3rd Edition	Sung-Mo Kang, Vuguf Labalagi	2002	
	Design		I usui Lebeleci	2002	

akam	aler	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus B.E Honors in VLSI Design

SoE No. HON-101

6th Semester

EEH14	3	Lab: Digita	al IC Design	$L=0 \qquad T=0 \qquad P=1 \qquad Credits=1$					
Evaluati Scheme	on	MSE-I*	MSE-II*	MSE-III*TAESETotalESE Duration60401003 Hrs					
*Best T three would conside	wo out of MSE's be red								
Prerequ	iisites		1	L					
Course Students 1. U t c	Objective s should be Understand he area of circuits, u currently us	able to knowledge f CAD designits and able VLSI ch	and skills in gn of digital systems on iips.	Course Outo Students will 1. Demo digita circui 2. Solve techn 3. Desig design 4. Desig	come be able to onstrate is 1 integrat t design, i complex iques m CMOS m m program	sues relate ed circuit mplement circuit pro combina nmable log	ed to the c s includin ation met oblems an tional, se gic arrays	levelopment on fabrication hodologies do optimization equential logi	
SN 1. 2.	Experime a) Plot cu b) Plot cu To design	ent Name rrent voltage rrent voltage and simulate	characteristics characteristics cMOS inver	of NMOS transformed of PMOS transformed to the transformed by the transformed by the tern using 0.5 m	nsistor usi nsistor usi icron tech	ng 0.5 mic ng 0.5 mic nology	eron techn eron techn	ology ology	
3.	A plot tra w/l of NM	nsfer charact	eristic of Pseu	do-NMOS invo	erter with	w/l for PN	AOS is eq	ual to twice	
4.	Design and simulate two input CMOS NAND gate								
5.	Design tw	vo input CMC	OS NOR gate.						
б.	Design C	MOS transmi	ssion gate.						
7.	Design an	nd simulate D	-Latch using t	ransmission ga	te				
8.	Design 2:	1 MUX using	g transmission	gate.					
	Design tw	vo input CMC	OS XOR gate						
9.	-								

akan	aler	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus

B.E Honors in VLSI Design

SoE No. **HON-101**

Text	Books:				
	Title	Edition	Author		Publisher
1	CMOS VLSI design: A Circuits and Systems Perspective	A 3rd Edition	Neil H. E. Weste F. Harris, A.Bane	, David erjee,	Addison Wesley Publication, 2008
Refer	rence Book:				
	Title	Edition	Author		Publisher
1	CMOS Digital Integrated Circuits: Analysis and Design	3rd Edition	Sung-Mo Kang, Yusuf Lebeleci	McGraw 2002	-Hill Publications,

	cham!	- and -	May 2021	1.00	Applicable for
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	
-					

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus B.E Honors in VLSI Design

SoE No. HON-101

7th Semester

EEH151	Low Power	· CMOS VLS	[Design	L=3	T = 0	P = 0	Credits = 3	
Evaluation Scheme	MSE-I*	MSE-II*	MSE-III*	ТА	ESE	Total	ESE Duration	
*Best Two out of three MSE's would be considered	15	15	15 30 40 100 3 Hrs					
Prerequisites			I					
Course Objective			Course Outcome					
Students should be able to			Students will be able to					
1. expose students to the advanced design			1. Graduates will understand the concepts of sources of					
techniques and methodology and			power dis	sipation a	nd basics	of CMOS	Physics.	
industrial stan	2. Understar	nd the cor	cepts of l	evels of a	bstraction and			
Circuits and Sy	ystems desigr	1	its power	dissipatio	n.			
			3. Understar	nd the P	ower Op	timization	n methods at	
			Behaviou	r. Logic a	nd Circuit	Level des	sign.	
			4. Understar	d the prir	nciples for	low powe	er designs and	
			have the	canabiliti	e to anal	vze nowe	r consumption	
			and devel	on low no	wor strate	yze powe	given exeter	
			and devel	oh iow bo	wei suale	gies for a	given system.	

UNIT I :

Need for low power VLSI chips, Sources of power dissipation: Short circuit dissipation, dynamic dissipation, designing Techniques for low power. Physics of power dissipation in MOSFET devices, MOS Capacitance analysis, low power figure of merits, brief overview of low power VLSI design limits.

UNIT II :

Probabilistic power analysis: random logic signals, probability and frequency, probabilistic power analysis techniques, signal entropy, Low power circuits: transistor and gate sizing, equivalent pin ordering, network

reconstruction and reorganization, Glitching Power, special latches and flip-flops.

UNIT III :

Behavioural, Logic and circuit level approaches. Algorithm level transforms. Circuit activity driven architectural transformations, voltage scaling, operation reduction and substitution, pre-computation, Logic:gate reorganization, signal gating, logic encoding

UNIT IV :

Design style, Leakage current in Deep sub-micron transistors, device design issues, minimizing shortchannel effect. Low voltage design techniques using reverse Vgs. Steep sub threshold swing and multiple threshold voltages. Multiple threshold CMOS based on path critically, multiple supply voltages.

Chairperson Dean (Acad. Matters) Date of Release Version	chan	de	May 2021	1.00	Applicable for
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus

B.E Honors in VLSI Design

SoE No. HON-101

UNIT V:

Low energy computing, Energy dissipation in transistor channel. Energy recovery circuit design, designs with reversible and partially reversible logic, energy recovery in adiabatic logic and SRAM core, Design of peripheral circuits – address decoder, level shifter and IO Buffer, supply clock generation

UNIT VI:

2

Circuits: Analysis and

Design

Introduction, sources of software power dissipation, power estimation and optimization. Co-design for low power

Text	Books:				
	Title	Edition	Author		Publisher
1	Solid State Electronic Devices	6th Edition	Ben Streetman, S Benerjee	anjay	Prentice Hall India
2	Low-Power CMOS VLS Circuit Design	I 1st Edition	Kaushik Roy, Sh Prasad	arat C.	Wiley India,2009
3	CMOS VLSI design: A Circuits and System Perspective	A 3rd Edition	Neil H. E. Weste F. Harris, A.Bane	, David erjee,	Addison Wesley Publication, 2008
Refer	ence Book:				
	Title	Edition	Author		Publisher
1	Low-Power Digital CMOS Design	2 nd Edition	A. Chandrakasan and R. Brodersen	Boston:	Springer, 1995.
	CMOS Digital Integrated				

3rd Edition

Sung-Mo Kang,

Yusuf Lebeleci

McGraw-Hill Publications,

2002

			AY2021-22 Onwards
Chairperson Dear	n (Acad. Matters) Da	ate of Release Version	n

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus B.E Honors in VLSI Design

SoE No. HON-101

7th Semester

EEH152	2	Lab: Low I Design	Power CMOS	VLSI	L= 0	T = 0	P = 1	Credits = 1
Evaluation Scheme	on	MSE-I*	MSE-II*	MSE-III*	ТА	ESE	Total	ESE Duration
*Best Ty three would consider	wo out of MSE's be red				60	40	100	3 Hrs
Prerequ	isites			I		1		1
Course Objective Students should be able to 1. expose students to the advanced design techniques and methodology and industrial standard EDA tools in Digital Circuits and Systems design			 Course Outcome Students will be able to Graduates will understand the concepts of sources of power dissipation and basics of CMOS Physics. Understand the concepts of levels of abstraction and its power dissipation. Understand the Power Optimization methods at Behaviour, Logic and Circuit Level design. Understand the principles for low power designs, and have the capabilities to analyze power consumption and develop low power strategies for a given system. 					
	F •	4 NT						
SN 1	Experim Diot ourro	ent Name	aractoristics of	FNMOS transi	ator using	CMOS to	ahnalagu	
1.	Design fu	inction			stor using	CIVIOS IE	chilology	
3.	F=(A*B*C)+(D*E) with complementary CMOS Logic and pseudo NMOS Logic. 3. Design function F=(A+B)*(C+D) with complementary CMOS Logic and pseudo NMOS Logic.							
4	4 Design two input CMOS VOD gets							
4.	4. Design two input CMOS XNOP gate							
<i>J</i> .	5. Design two input CMOS ANOK gate 6. Design adiabatic Half Adder							
7	O. Design adiabatic Half Subtractor 7 Design adiabatic Half Subtractor							
· · · · · · · · · · · · · · · · · · ·	 7. Design adiabatic Hall Subtractor 8. Design adiabatic Full Adder 9. Design adiabatic 2:1 Multiplexer 							
9								
10	Design ac	liabatic 4.1 N	fultiplexer					
10.			i i i i piezei					

akan	april	May 2021	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version			
VCCE EE 10						

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics Engineering SoE and Syllabus B.E Honors in VLSI Design

SoE No. HON-101

Text Books:						
	Title	Edition	Author	Publisher		
1	Solid State Electronic Devices	6th Edition	Ben Streetman, Sanjay Benerjee	Prentice Hall India		
2	Low-Power CMOS VLSI Circuit Design	1st Edition	Kaushik Roy, Sharat C. Prasad	Wiley India,2009		
3	CMOS VLSI design: A Circuits and Systems Perspective	3rd Edition	Neil H. E. Weste, David F. Harris, A.Banerjee,	Addison Wesley Publication, 2008		
Reference Book:						

	Title	Edition	Author	Publisher
1	Low-Power Digital CMOS Design	2 nd Edition	A. Chandrakasan and R. Brodersen	Boston: Springer, 1995.
2	CMOS Digital Integrated Circuits: Analysis and Design	3rd Edition	Sung-Mo Kang, Yusuf Lebeleci	McGraw-Hill Publications, 2002

akan	all	May 2021	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version			