

YESHWANTRAO CHAVAN COLLEGE OF ENGINEERING (An Autonomous Institution affiliated to R T M Nagpur University Nagpur) Accredited by NAAC (1stCycle) with 'A' Grade (Score 3.25 on 4 Point Scale)

Wanadongri, Hingna Road, Nagpur-441110

Department of Electrical Engineering (Honors in MGT)

B.E. Honors in Micro Grid Technologies SoE & Syllabus 2021-22

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus **B.E Honors in Micro Grid Technologies**

SoE No. HON-101

Information Brochure of Honor Program

- 1. Title of Program: Micro grid Technologies
- 2. Type of Program : Honor
- 3. Department offering the program: Electrical Engineering
- 4. Industry / Association / Collaboration: Skywing technology, Pune

Kanta Height, First floor, Office No. 102 Sr. No. 3/21, opp. Sawata Mali Mandir, Narhe, Pune, Maharashtra 411041

- 5. Departments eligible to opt for the program: Electrical Engineering Students
- 6. General information about courses in program:

The theory course in the program includes

Renewable Energy System : This Course deals with various_Energy Sources such as solar, wind, energy from Biomass, Direct Energy Conversion Processes and Applications of Renewable energy)

Distributed Generation and Micro Grid Technology-This course deals with overview of Distribution Generation (DG) and Storage Technologies, Operational benefits of Grid connected Renewable DG systems, Technical impacts of DGs on Grid, Operation Control and Modeling of Micro grid, Protection of Micro Grid)

Micro Grid Planning and Management: In this course we study Micro Grid planning, Electricity Act 2003, Energy Conservation Act 2001, Indian Electricity Rule 2005, Grid code for Conventional grid and Micro Grid, Micro Grid Generation and Storage Planning, Micro Grid Economics, Impact of External Market Prices and Pricing Policies, Micro Grid Operation Management, Micro Grid Security and State Estimation.

em	de	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus B.E Honors in Micro Grid Technologies

SoE No. HON-101

Advanced Power Electronics: deals with various Semiconductor Power Devices, AC/DC

Controlled

Rectifier, Non isolated DC/DC Converters, Isolated DC/DC converters, Multilevel Inverters,

Soft switching Converters

Power Quality: In this course the main focus is to understand the different power quality problems, its causes, effects and various mitigating custom power devices. Further the subject is concentrated to analyze the different control strategies and algorithm.

The laboratory courses in the program includes Advanced Power Electronics, FACTS and Power Conditioning, Power System Simulation

Credits for theory courses are 15 and for laboratory courses are 3.

7. Advance knowledge or research orientation of Program:

After studying this honor program, students are ready to carry their research in various fields viz distributed active synchronization for micro grid under unbalance and harmonic distortions, DC micro grid operation and control, PV micro grids, shifting the energy paradigm, smart grid strategy, power quality enhancement, energy cost saving and high efficiency, system recovery under faults(selfheal), micro grid in rural area, Ac/DC micro grid for ships and aircrafts, AC/DC micro grids protection, DC micro grid and DC homes, micro grids based on wind/PV/storage hybrid system, energy storage system, energy management system, Design, modeling and control of micro grid, Coordination control schemes between micro grid elements including communication systems and energy management systems for DC micro grids

8. Employability potential of program:

A candidate with B.E. Electrical engineering and Major/Honor in Micro Grid technology is a most suitable person to get placement as micro grid design engineer (hardware), micro grid system modeler, senior energy and sustainability consultant, senior data scientist/ energy optimization, energy auditor/ energy consultant, micro grid application engineer, distributed energy services, solar energy project manager, Micro Grid Controls Engineer, Customer Service Manager for Commercial Power Generation, Electrical Engineer- Power Systems, embedded software engineer in Gram power Jaipur RJ, senior power system control engineer, system engineer, automation engineer, grid modernization consultant, smart grid engineer, project planning and control specialist

em	Mer.	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus

B.E Honors in Micro Grid Technologies

SoE No. HON-101

9. Departmental Steering committee: For proper publicity / conduct of program

SN	Name of the	Post	Designation	e-mail ID	Contact
	Faculty Member				Number
1	Dr. S. P. Gawande	Member	Assistant Professor	spgawande_18@yahoo.com	9960328951
2	Dr. A. P. Munshi	Publicity	Assistant Professor	aniketmunshi@gmail.com	9158000491
		head			9422157818
3	Dr.S. R. Gaigowal	Member	Assistant Professor	sandeep_rg5@rediffmail.com	9423028761

10. Program Coordinator:

SN	Name of the Faculty	Post	Designation	e-mail ID	Contact
	Member				Number
1	Dr.P.M. Meshram	Program	Associate	praful_1087@rediffmail.com	9422826696
		coordinator	Professor		9156004936

em	aler	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus

B.E Honors in Micro Grid Technologies

SoE No. HON-101

Scheme of Examinations Honors in Micro Grid Technologies

		G 1			Co	onta	et H	ours		% V	Veightag	ge	ESE
SN	Sem	Sub. Code	Subject	T/P	L	Т	Р	Hrs	Credits	MSEs*	TA**	ESE	Duration Hours
1	5	ELH131	Renewable Energy System	Т	3	0	0	3	3	30	30	40	3
2	5	ELH132	Distributed Generation and Micro Grid Technologies	Т	3	0	0	3	3	30	30	40	3
3	6	ELH141	Micro Grid Planning and Management	Т	3	0	0	3	3	30	30	40	3
4	6	ELH142	Advanced Power Electronics	Т	3	0	0	3	3	30	30	40	3
5	6	ELH143	Lab: Advanced Power Electronics	Р	0	0	2	2	1		60	40	
6	7	ELH151	Power Quality	Т	3	0	0	3	3	30	30	40	3
7	7	ELH152	Lab:FACTS and Power Conditioning	Р	0	0	2	2	1		60	40	
8	7	ELH153	Lab:Power System Simulation	Р	0	0	2	2	1		60	40	
	TOTAL				15	0	6	21	18				

MSEs* = Three MSEs of 15 Marks each will conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment

TA ** = for Theory : 20 marks on lecture quizzes, 8 marks on assignments, 2 marks on class performance

TA** = for Practical : MSPA will be 15 marks each

em	de	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering

SoE and Syllabus

B.E Honors in Micro Grid Technologies

SoE No. HON-101

V Semester

ELH131	Renewable	Energy System	m	L= 3	T = 0	P = 0	Credits = 3
Evaluation Scheme *Best Two out of	MSE-I*	MSE-II*	MSE-III*	ТА	ESE	Total	ESE Durat ion
three MSE's would be considered	15	15	15	30	40	100	3 Hrs
Prerequisites							
Course Objective: This subject introduced energy sources to knowledge of Elect wind, solar, small and MHD	uce the differ the students ctric Power hydro, Biom	rent renewable . Students get generation by lass, Fuel Cell	Course Ou Students wi 1. Sum rene and 2. Utili estin type 3. Den MH 4. Stud sour	tcome Il be able marize, cl wable ene Indian cor ze solar e nate solar s of wind nonstrate, c D and biom by of grid ces.	to assify and rgy source ntext. nergy for radiation turbine ge Classify an mass energ interfacir	compare es, outline various ap geometry nerator. nd utilize gy. ng of rene	types of as per Global plications, and classify fuel cell, ewable energy

UNIT I : Introduction to Energy Sources

World Energy Futures, Conventional Energy Sources, Renewable Energy Sources, Prospects of Renewable Energy Sources. Environmental aspects of Electrical Energy Generation.

UNIT II : Solar Energy

Introduction to Solar Radiation and its measurement, Introduction to Solar Energy Collectors and Storage.

Applications of Solar Energy: Solar Thermal Electric Conversion, Thermal Electric Conversion Systems, Solar Electric power Generation Solar Photo- Voltaic, Solar Cell Principle, Semiconductor Junctions, Conversion efficiency and power output, Basic Photo Voltaic System for Power Generation. Solar photovoltaic modules, maximum power point tracking and algorithms, Concentrating solar power, Thermo- PV (TPV)

em	de	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus

B.E Honors in Micro Grid Technologies

SoE No. HON-101

UNIT III : Wind Energy

Introduction to wind energy Conversion, the nature of the wind, Power in the wind.

Wind Energy Conversion: Wind data and energy estimation, Site Selection Considerations, Basic Components of a Wind Energy Conversion System, Classification of WEC Systems, Schemes for Electric Generation using Synchronous Generator and Induction Generator, Wind energy Storage, Off shore wind power generation.

UNIT IV : Direct Energy Conversion Processes (Overview)

Information on Magneto Hydro Dynamic Power Generation:

Thermo-Electric Generation: Basic principles of thermo-electric power generation, Seebeck, Peltier, Thomson effects, Thermo-Electric power generator, Analysis, materials.

Thermionic Generation: Thermionic emission and work function, Basic thermionic generation.

Fuel Cells H2O2Cell, Classification of fuel Cells, Types, Advantages, Electrodes, Polarization.

Thermo Nuclear Fusion Energy: The basic Nuclear Function and Reactions Plasma Confinement, Thermo Nuclear function Reactions.

UNIT V: Energy from Biomass

Introduction: Biomass conversion technologies, photosynthesis, Bio-gas generation, types of bio-gas plants.

Biomass as a Source of Energy: Method for obtaining energy from Bio-mass, Biological Conversion of Solar Energy.

UNIT VI: Applications of Renewable energy

Wind Farms: Grid interfacing of wind farm, methods of grid connection, grid system and properties. Small hydro power, Hybrid systems: Wind- solar, etc,

Text	Books:			
	Title	Edition	Author	Publisher
1	Non-Conventional Sources of Energy	4th Edition, 2010	G.D. Rai	Khanna Publishers
2	Non Conventional Energy Sources	2nd Edition. 2009	B. H. Khan	The McGraw Companies Hill
	Renewable energy sources and conversion technology	1990	N.K. Bansal, M. Kleemann, M. Heliss	Tata McGraw Hill

em	aller	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering

SoE and Syllabus B.E Honors in Micro Grid Technologies

SoE No. HON-101

Refe	rence Book:			
	Title	Edition	Author	Publisher
1	Direct Energy Conversion		R. A. Coombie	Pitman
2	Renewable energy sources and emerging technologies	1st Edition, 2008	D. P. Kothari ,K.C.Singal,Rakesh Ranjan	PHI Learning
	Related IEEE/IEE			

Chairperson Dean (Acad. Matters) Date of Release Version	em	Alex	May 2021	1.00	Applicable for
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering

SoE and Syllabus

B.E Honors in Micro Grid Technologies

SoE No. HON-101

V Semester

ELH132	Distribute Grid Tech	d Generation nologies	and Micro	L= 3	T = 0	P = 0	Credits = 3
EvaluationMSE-I*MSE-II*SchemeMSE-I			MSE-III*	TA	ESE	Total	ESE Duration
*Best Two out of three MSE's would be considered	of E's be 15 15 15		30	40	100	3 Hrs	
Prerequisites			-				
Course Objective:			Course Outcome				
 To illustrate generation To analyze t integration. To study con configuratio To find optin control aspe 	the concept he impact of ncept of Micr n mal size, plac cts of DGs	of distributed grid to Grid and its cement and	a) Find and and b) Anal its co c) Desc perfo integ d) Anal cons issue	the type, storage sy lyze the in ontrol asp cribe the o ormance a grated pov lyze the N ideration es of the D	to size and o stems. npact of D ects operational nalysis of ver system licro Grid the operat OGs	optimal pla DGs grid in I impacts a DGs com Is taking int ional and	acement DG ntegration and and nected to to control

UNIT I : Introduction:

Introduction, Definition and Benefits of DG, Distributed generation (DG) overview and technology trend, Renewable and Non-renewable DG Technologies. Comparison amongst different DG technologies, Brief overview of various Distribution Generations.

UNIT II : Distribution Generation (DG) and Storage Technologies

Concept of distributed generations (DG) or distributed energy resources (DERs) topologies, Renewable DG Technologies: PV, Wind, Fuel Cell, micro hydro. Hybrid system. Classification and comparison of Energy Storage Systems (ESS), Battery, Super Capacitor, Flywheel, SMES, etc. Optimal placement of DG sources in distribution systems

UNIT III : Operational benefits of Grid connected Renewable DG systems :

Benefits of Renewable DG integration on : Reliability of Distribution System (Methods of improving reliability, reliability indices), Power loss reduction (optimal sizing of DG), Voltage profile improvement, Economic benefits, Emission reduction

em	der	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering

SoE and Syllabus

B.E Honors in Micro Grid Technologies

SoE No. HON-101

UNIT IV : Technical impacts of DGs on Grid :-

Grid interconnection issues for grid connected operation of various types of DG systems. Impact of DGs upon transient and dynamic stability, grid power quality, and protective relaying of existing distribution systems.

UNIT V: Introduction and Operation Control and Modeling of Micro Grid :-

Concept and definition of Micro Grid, Types of Micro Grid (AC, DC and Hybrid AC-DC), review of sources of Micro Grid, typical structure and configuration of a microgrid, Autonomous and non-autonomous grids, Sizing of Micro Grid, Micro grid with multiple DGs – Power Electronics interfaces in DC and AC microgrids, communication infrastructure, Micro Grid implementation in Indian and international scenario.

UNIT VI: Controls & Protection of Micro Grid :-

Control techniques for voltage, frequency, active and reactive power control of AC Micro Grid system, transients in Micro Grid, Protection of Micro Grid. DC Microgrid: Unipolar and Bipolar LVDC.

Text	Books:			
	Title	Edition	Author	Publisher
1	Distributed Power Generation – Planning and Evaluation'	2000	H. Lee Willis, Walter G. Scott	Marcel Decker Press
2	Renewable Energy Systems – Design and Analysis with Induction Generators'		M.Godoy Simoes, Felix A.Farret	CRC press
3	Micro Grid: A Conceptual Solution'	June 2004	Robert Lasseter, Paolo Piagi	PESC 2004
Refer	rence Book:			
	Title	Edition	Author	Publisher
1	Transients of a Micro-Grid System with Multiple Distributed Energy Resources'	2005	F. Katiraei, M.R. Iravani	International Conference on Power Systems Transients (IPST'05) in Montreal, Canada on June 19-23, 2005
2	'Facility Microgrids'	2005	Z. Ye, R. Walling, N. Miller, P. Du, K. Nelson	General Electric Global Research Center, Niskayuna, New York, Subcontract report, May 2005
3	'Microgrids and Active Distribution Networks'	2009	S. Chowdhury, S.P. Chowdhury and P. Crossley	The Institution of Engineering and Technology, London, U.K,

em	aler	May 2021	1.00	Applicable for				
Chairperson	Dean (Acad. Matters)	Date of Release	Version					

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering

SoE and Syllabus

B.E Honors in Micro Grid Technologies

SoE No. HON-101

VI Semester

ELH141	Micro Grid Planning and Management			L= 3	T = 0	P = 0	Credits = 3
Evaluation Scheme	MSE-I* MSE-II* MSE-I			TA	ESE	Total	ESE Duration
*Best Two out of three MSE's would be considered	15	15	15	30	40	100	3 Hrs
Prerequisites							
Course Objective			Course Outcome				
To understand the concept of Micro Grid			Students will be able to				
planning for generation and storage. Students			1. To identify and describe the evolvement Micro				
will also understand the operational issues,			Grid, its features and different standards applicable				
economics, security assessment and state			for Micro Grid deployment.				
estimation			2. To select and size the various Micro Grid resources.				Micro Grid
			3. To select and apply the various pricing policies and				
			financial management of Micro Grid.				
			4. To identify factors affecting system security and			n security and	
			state est	timation.		-	-

UNIT I: Introduction

Introduction to Microgrid planning, planning tools, National and Regional Planning, Electricity Act 2003, Energy Conservation Act 2001, Indian Electricity Rule 2005, Grid code for Conventional grid and Microgrid.

UNIT II : Microgrid Generation and Storage Planning

Concept of Generation planning, power generation integration for microgrid, cogeneration/captive power, Power pooling and power trading, optimal storage calculation for microgrid.

UNIT III : Microgrid Economics

Power system Economics, Power sector finance, financial planning, private participation Rural Electrification investment, concept of Rational tariffs, Internal Markets and Business Models for Microgrids, External Market and Regulatory Settings for Microgrids.

UNIT IV : Impact of External Market Prices and Pricing Policies

Sensitivity analysis, sensitivity for Energy Balancing in response to external market prices, sensitivity of technical benefits in response to external market prices, sensitivity analysis of environmental and economical benefits for external market price variation.

	em	aler	May 2021	1.00	Applicable for
Chairperson Dean (Acad. Matters) Date of Release Version	Chairperson	Dean (Acad. Matters)	Date of Release	Version	7.1.2021 22 01.11a.100

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering

SoE and Syllabus

B.E Honors in Micro Grid Technologies

SoE No. HON-101

UNIT V: Microgrid Operation Management

System operation planning, Performance tools of a Micro Grid: - Load forecasting, state estimation, load flow and real time simulation. Demand response and demand side management. Computerized management, power system simulator. Computer aided planning

UNIT VI: Microgrid Security and State Estimation

Operation in Microgrid Security:- Introduction, Factors affecting system security, Contingency analysis, ac power flow security analysis.

State Estimation: - Introduction, Method of least squares, Maximum likelihood weighted least square estimation, State estimation methods for microgrid, Detection and identification of bad measurements, network observability and pseudo-measurements.

Te	ext books:			
	Title	Edition	Author	Publisher
1	Electrical Power System Planning		A.S.Pabla	Macmillan India Ltd.
2	Energy Processing and Smart Grid	First	James A. Momoh	Wiley -IEEE Press
3	Microgrid : Architecture and Control	First	Edited By : Nikos Hatziargyriou	Wiley – IEEE Press
4	Electrical Power Systems – Analysis, Security and Deregulation	Third Printing	P.Venkatesh, B. V. Manikandan, S. Charles Raja, A. Srinivasan	PHI Learning Pvt. Ltd.

em	de	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering

SoE and Syllabus

B.E Honors in Micro Grid Technologies

SoE No. HON-101

VI Semester

ELH142 Advanced Power Electron			nics	L= 3	T = 0	$\mathbf{P} = 0$	Credits = 3
EvaluationMSE-I*MSE-II*			MSE-III*	ТА	ESE	Total	ESE Duration
*Best Two out of three MSE's would be considered	15	15	15	30	40	100	3 Hrs
Prerequisites							
 Course Objective: 1. To impart the knowledge of recent and advanced developments in the PE field. 2. To ensure the students having an indepth understanding of the design and control of various converters. 			Course Out Students wil 1) Describ and adv 2) Demons controll 3) Analyze	tcome Il be able t e the work anced sen strate the s ed rectifie e and desig	to king opera niconducto skill of ana rs. gn of diffe	tion of co or devices alyzing an erent types	nventional d design of
			converte	ers.			-

UNIT I: Semiconductor Power Devices

Conventional semiconductor power devices:-Thyristor, Gate Turn Off thyristor(GTO),Metal Oxide Field Effect Transitor(MOSFET),Insulted Gate Bipolar Transistor(IGBT). Advanced semiconductor devices: MOS Turn Of Thyristor(MTO), Emitter Turn of Thyristor(ETO), Integrated Gate Commuted Thyristor(IGCT), MOS Controlled Thyristor(MCT), Static Induction Thyristor(SITH) - symbol, structure and equivalent circuit- comparison of their features. Significance of wide band gap materials (especially SiC and GaN).Introduction to SiC devices

UNIT II: AC/DC Controlled Rectifier

Single phase half controlled and full controlled converters continuous and discontinuous mode, Three phase controlled rectifier continuous mode, Single phase series converter, single and three phase dual converters, Effect of source inductance, Evaluation of input power factor and harmonic factor.

UNIT III: Non isolated DC/DC Converters

Principle of operation and analysis of buck, boost, buck-boost, Cuk and Single Ended Primary Inductance Converter (SEPIC) regulators in discontinuous and Continuous (DCM/CCM) mode, Input and output filter design.

em	de	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering SoE and Syllabus

B.E Honors in Micro Grid Technologies

SoE No. HON-101

UNIT IV : Isolated DC/DC converters

Introduction, transformer models, principle of operation and analysis of Flyback, Forward, double ended (Two Switch) forward, Push-Pull, half- bridge and full Bridge converters. Continuous and discontinuous mode operation and design consideration.

UNIT V: Multilevel Inverters

Single phase half and full bridge Voltage source Inverter(VSI), Three Phase Inverter, Evaluation of performance parameters. Multilevel inverter topologies- Neutral Point clamped (NPC), Flying capacitor (FC), Symmetrical and asymmetrical Cascaded Inverters etc., Other advanced inverters such as Multi-pulse, matrix inverter, Modulation techniques: Pulse Width Modulation (PWM), SHE, SHE PWM, Hysteresis, Space Vector modulation techniques for above inverters, Introduction to Current Source Inverter (CSI)

UNIT VI: Soft switching Converters

Resonant Converters- Classification of resonant converters, Basic resonant circuit concepts, Series parallel resonant converters, Zero voltage switching (ZVS) and Zero Current (ZCS) switching converters, steady state and dynamic analysis, modeling and control

Text books:

	Title	Edition	Author	Publisher
1	Power Electronics Circuits	2004	M.H. Rashid	PHI third edition First
	Devices application			Indian edition
2	Power Electronics: Convert ers, Application and Design	1996	Ned Mohan, Undeland and Robbin	John Wiley & Sons Third edition
3	High power converter and ac drives	2006	Bin Wu	Wiley-IEEE Press

Reference books:

	Title	Edition	Author	Publisher
	Pulse width modulated DC-DC	1993	Marian K Kazimierczuk	John Willey & Sons
1	power converters			
2	Power electronics- principles and applications	1995	Joseph Vithayathil	McGraw hill Inc, New York
3	EEE/IET publications		Various authors	On Internet site www.ieeexplore.ieee.org

Chairperson Dean (Acad. Matters) Date of Release Version	em	Mer.	May 2021	1.00	Applicable for
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering

SoE and Syllabus

B.E Honors in Micro Grid Technologies

SoE No. HON-101

VI Semester

ELH143 Lab : Advanced Power Electronics			L= 0		T = 0	P = 2	Credits = 1	
Evaluation Scheme	MSPA 1	MSPA 2	MSPA 3	MSPA 4	TA*	ESE	Total	ESE Duration
					60	40	100	3 Hrs
Prerequisites	Power Elec	etronics						
Course Objectiv	e	<u> </u>		Course Ou				
 To impart the l developm To ensure the understand various co 	knowledge o ents in the P e students ding of the onverter	f recent and a E field. having an design and c	advanced in-depth ontrol of	Students w 1. Describe and 2 Demonst con 3. Analyz con	ill be abl the wor advance rate the s trolled re e and verters.	e to king ope d semico skill of ar ectifiers. design o	ration of nductor of nalyzing a of vario	conventional levices and design of us types of

The list of practicals will be according to the syllabi of Advanced power Electronics

em	april	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering

SoE and Syllabus

B.E Honors in Micro Grid Technologies

SoE No. HON-101

VII Semester

ELH151	Power Qua		L= 3	T = 0	P = 0	Credits = 3		
Evaluation	MSE-I*	MSE-II*	MSE-III*	TA	ESE	Total	ESE Duration	
Scheme *Best Two out of three MSE's would be considered	15	15	15	30	40	100	3 Hrs	
Prerequisites	Power Syst	em and Power	Electronics					
Course Objective	:		Course O	itcome				
Understand the	e different	power	Students will be able to					
quality proble effects and v	1. De pro dis	 Define and discuss the various power quality problem, their causes and effects in distribution system 						
custom power d	levices. Furtl	ner the	2. Identify and analyze the different voltage and					
subject is conce	cur 3. Ex	current based power quality problems3. Explain the various non-linear load, effects of						
the different con	har	harmonics on power system and apply						
algorithm.	cor	ventional	mitigatior	n methods	•			
	4. De cor alg	scribe and ditioners, orithms	apply the and the	ne variou eir refere	s power quality ence generation			

UNIT I : Introduction

Introduction – Characterization of Electric Power Quality: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation, Power acceptability curves – power quality problems: poor load power factor, Non linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards.

UNIT II : Non Linear Loads

Single phase / Three phase static converters, Battery chargers, Arc furnaces, Fluorescent lighting, pulse modulated devices, Adjustable speed drives.

UNIT III : Measurement and Analysis Method

Voltage, Current, Power and Energy measurements, power factor measurements and definitions, event recorders, Measurement Error – Analysis: Analysis in the periodic steady state, Time domain methods, Frequency domain methods: Laplace's, Fourier and Hartley transform

- The Walsh Transform - Wavelet Transform.

em	de	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering

SoE and Syllabus

B.E Honors in Micro Grid Technologies

SoE No. HON-101

UNIT IV : Analysis and Conventional Mitigation Methods

Analysis of power outages, Analysis of unbalance: Symmetrical components of phasor quantities, Instantaneous symmetrical components, Instantaneous real and reactive powers, Analysis of distortion: On–line extraction of fundamental sequence components from measured samples – Harmonic indices.

UNIT V: Voltage Sag

Analysis of voltage sag: Detorit Edison sag score, Voltage sag energy, Voltage Sag Lost Energy Index (VSLEI)- Analysis of voltage flicker, Reduced duration and customer impact of outages, Classical load balancing problem: Open loop balancing, Closed loop balancing, current balancing, Harmonic reduction, Voltage sag reduction

UNIT VI: Power Quality Improvement

Utility-Customer interface –Harmonic filters: passive,–Custom power devices: Network reconfiguring Devices, Load compensation using

DSTATCOM, Voltage regulation using DSTATCOM, protecting sensitive loads using DVR, UPQC – control strategies: P-Q theory, Synchronous detection method – Custom power park – Status of application of custom power devices.

Text	Books:			
	Title	Edition	Author	Publisher
1	Power Quality Enhancement Using Custom Power Devices	2002	Arindam Ghosh	Kluwer Academic Publishers
2	Electric Power Quality	1994(2nd edition)	G.T.Heydt	Stars in a Circle Publications
	Electrical Power Systems Quality	3 rd edition	R.C. Duggan	McGraw Hill
Refer	ence Book:			
	Title	Edition	Author	Publisher
1	Power System Harmonics	2003	A.J. Arrillga	John Wiley and Sons
2	Power Electronic Converter Harmonics	1999	Derek A. Paice	Wiley IEEE Press

em	de	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering

SoE and Syllabus B.E Honors in Micro Grid Technologies

SoE No. HON-101

VII Semester

ELH152	Lab: F	ACTS and P	Power Con	ditio	oning	L=0	T = 0	P = 2	Credits = 1
Evaluation Scheme	MSPA 1	MSPA 2	MSPA	3	MSPA 4	TA*	ESE	Total	ESE Duration
	15	15	15		15	60	40	100	3 Hrs
Prerequisites	Power Syste	em and Powe	er Electroni	cs					
Course Object To understand related intercon solution Controll (TCSC, Shunt(U	ive: the probl with s nected syste s using lers,Shunt SV GCSC,SSSC IPFC),Series	ems and c tability of ms and to s different /C,STATCO),Series Series(IPFC)	onstraints f large tudy their FACTS M),Series	Co Stu	 urse Outc idents will 1) Study classif Transp 2) Imple series 3) Exten conce series 	ome be able various fication mission ment an comper d, appl pt usin -series	to FACTS and expla system. d design hsators ly and a g combi controlle	Controlle ain its app different analyze ne serie ers to e	ers, its plications in shunt and the FACTS es-shunt and evaluate the

Sr N	Name of Experiment
1.	To Study Modeling and Performance of Medium Transmission Line
2.	To study complete analysis and performance of transmission line for symmetrical fault usin Power System Toolbox
3.	To Study the performance of Thyristor Controlled Rectifier (TCR) for varying firing angle
4.	To Study the performance of Fixed Capacitor-Thyristor Controlled Rectifier (FC-TCR) on transmission system
5.	To Study Inductive and Capacitive Modes of Thyristor Controlled Series Capacitor (TCSC) Using MATLAB
6.	To Study Voltage Source Converter Based Static Synchronous Series Compensator (SSSC) and its operating modes
7.	To Study Various Power Quality Problems in Radial Distribution System
8.	To Study Current Harmonics drawn by Power Electronics Interface
9.	To Study Passive Power Filters Using MATLAB Simulink
10.	To Study the Network Configuring Devices (Static Current Limiter-SSCL)
11.	To Study, Modelling and Simulation of Reference Generation Algorithm (SRF/ISCT) for Series and shunt Compensation (DVR and DSTATCOM)
12	To Study Distribution Static compensator (DSTATCOM)

em	aler	May 2021	1.00	Applicable for AY2021-22 Onwards	
Chairperson	Dean (Acad. Matters)	Date of Release	Version		
		YCCE-EL			

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electrical Engineering

SoE and Syllabus

B.E Honors in Micro Grid Technologies

SoE No. HON-101

VII Semester

ELH153	53 Lab.: Power System Sime					L=0	T = 0	P = 2	Credits = 1
Evaluation SchemeMSPA 1MSPA 2MSPA 3		3	MSPA 4	TA*	ESE	Total	ESE Duration		
						60	40	100	3 Hrs
Prerequisites	Power Sys	tem and Powe	er Electror	nics					
Image: Prefequisites Image: Power System and Power Electron Course Objective: Image: Power System and Power Electron 1) To provide better understanding of power system analysis through digital simulation. 2) To present a problem oriented knowledge of power system analysis methods. 3) To identify & formulate solutions to problems relevant to power system using MATLAB				Ca Stt 1) 2) 3) 4) 5) 6)	ourse Out udents wil Solv prob Expl mod conv Use com Desi sourc Desi appli Appl com	te and ll be able e and lems. ain, co ulations rerter top and ev pensatio gn and ces. gn the ication i ly and pensator	e to design ompare and pologies aluate th on. analyse variou n power infer rs in power	the po various apply the load b the renew s contro system. the perf er system	wer system pulse width to different palancing for wable energy ols and its formance of

List of Practicals

- 1. To study and implement the different multilevel inverters
- 2. Analysis and implementation of sinusoidal PWM for multilevel inverters
- 3. To study and simulate PV array with varying temperature and insolation level
- 4. To study and execute the different modes of operation of SSSC
- 5. To study and implement TCR for a transmission line
- 6. To study and simulate vector controlled Im drive using 5 level diode clamped multilevel inverter
- 7. To study and implement Distribution Static Compensator
- 8. To study and simulate the open loop balancing algorithm for load balancing

*In Laboratory courses, TA=MSPA 1+MSPA 2+MSPA 3+MSPA 4=60 MARKS

em	de	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	