

YESHWANTRAO CHAVAN COLLEGE OF ENGINEERING (An Autonomous Institution affiliated to R T M Nagpur University Nagpur) Accredited by NAAC (1stCycle) with 'A' Grade (Score 3.25 on 4 Point Scale)

Wanadongri, Hingna Road, Nagpur-441110

Department of Electronics & Communications Engineering (Honors in CVA)

B.E. Honors in Computer Vision and Automation SoE & Syllabus 2021-22

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics & Telecommunication Engineering SoE and Syllabus

B.E Honors in Computer Vision and Automation

SoE No. HON-101

B.E Honors in Computer Vision and Automation Information Brochure of Honor Program

- 1. Title of Program: Computer Vision and Automation
- **2.** Type of Program : **Honor**
- 3. Department offering the program: Electronics and Telecommunication Engineering
- 4. Industry / Association / Collaboration: Fireblaze Technologies Pvt. Ltd.
- 5. Department/s eligible to opt for the program: Only Department of Electronics and Telecommunication Engineering students are permitted to opt for this program.
- 6. General information about courses in program: (250 words)
 - The courses in the program include IoT, PLCs, Robotics, A.I., M.L., and Advanced Digital Communication which provides the vertical development of students and caters today's need of Industry.
 - IoT, PLCs, Robotics helps students in Automation in Industries whereas the courses like A.I. and M.L. are the need of hour. Now a days AI and ML are extensively used in almost all applications like Health Sciences, Cyber Security, Hiring Platforms and Systems, making communication easy and seamless, Accelerated Reading, Market Prediction, Accounting and Fintech, Building Smart Infrastructures and Solutions. It helps in cyber security projects and are being used for building smart solutions.
 - Advanced Digital Communication gives the detailed information about the core area of telecommunications.
- 7. Advance knowledge or research orientation of Program: (100 words) (for Honor)

Etineleans.	all -	May 2021	1.00	Applicable for				
Chairperson	Dean (Acad. Matters)	Date of Release	Version					

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics & Telecommunication Engineering

SoE and Syllabus B.E Honors in Computer Vision and Automation

SoE No. HON-101

The Honors program covers most of the courses which are not covered in the UG courses, hence it provides the advanced knowledge in the area of telecommunication and it will help the student to undertake the projects in telecommunication with the help of the courses like IoT, AI and ML.

8. Employability potential of program: (100 words) (for both Honor /Minor)

- Due to the great demand of AI ,ML and IoT in industries for carrying out various projects, the employability of students will be substantially increased due to this program.
- The knowledge of PLCs and IoT will be very much beneficial for the students as most of the industries use PLCs and IoT for automation.
- The students doing this program can be employed in all IT industries where most of the projects are in the area of AIML and IoT.
- PLC is a distinctive form of computer device designed for use in industrial control systems. It is required in various industries such as glass, paper ,cement etc. so, there is a great demand of engineers with the knowledge of PLCs.
- 9. Departmental Steering committee: For proper publicity / conduct of program

SN	Name of the	Post	Designation	e-mail ID	Contact
	Faculty				Numb
	Member				er
1.	Dr. M. S. Narlawar	HOD	Chairman	hod_et@ycce.edu	9763822298
2.	Dr. M. S. Dorle	Asst. Professor	In-charge	mdorle@gmail.com	9881711748
3.	Dr. P. W. Raut	Associate Professor	Member	pravinwraut@hotmail.com	9372153405
4.	Dr. D. B. Bhoyar	Asst. Professor	Member	dinesh.bhoyar23@gmail.com	9923448822

10. Program Coordinator:

SN	Name of the Faculty	Post	Designation	e-mail ID	Contact
	Member				Number
	Dr. M. S. Dorle	Asst.	In-charge	mdorle@gmail.com	9881711748
		Professor			

Etineleans.	Apr	May 2021	1.00	Applicable for			
Chairperson	Dean (Acad. Matters)	Date of Release	Version				
YCCE-ET-2							

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) Department of Electronics & Telecommunication Engineering

SoE and Syllabus

B.E Honors in Computer Vision and Automation

SoE No. HON-101

Scheme of Examinations

B.E Honors in Computer Vision and Automation

		Curk			Со	ntac	ct H	ours		% Weightage		ESE	
SN	Sem	Sub. Code	Subject	T/P	L	т	Ρ	Hrs	Credits	MSEs*	TA**	ESE	Duration Hours
	B.E Honors Computer Vision and Automation												
1	5	ETH131	Internet of Things	Т	3	0	0	3	3	30	30	40	3
2	5	ETH132	Industrial Automation and Robotics	Т	3	0	0	3	3	30	30	40	3
3	5	ETH133	Design Lab	Р	0	0	2	2	1		60	40	3
4	6	ETH141	Machine learning	Т	3	0	0	3	3	30	30	40	3
5	6	ETH142	Artificial Intelligence	Т	3	0	0	3	3	30	30	40	3
6	6	ETH143	Simulation Lab	Р	0	0	2	2	1		60	40	3
7	7	ETH151	Database Management Systems	Т	3	0	0	3	3	30	30	40	3
8	7	ETH152	Database Management Systems Lab	Р	0	0	2	2	1		60	40	3
	TOTAL				15	0	6	21	18				

MSEs* = Three MSEs of 15 Marks each will conducted and marks of better 2 of these 3 MSEs will be considered for Continuous Assessment

TA ** = for Theory : 20 marks on lecture quizzes, 8 marks on assignments, 2 marks on class performance TA** = for Practical : MSPA will be 15 marks each

Fineleans.	de	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics & Telecommunication Engineering

SoE and Syllabus

B.E Honors in Computer Vision and Automation

SoE No. HON-101

V Semester ETH131: Internet of Things

	Course Learning Objectives	Course Outcomes
	Students should be able to	Students will be able to
1.	To understand the physical and Logical design of IoT.	1. Explore the physical and Logical design of IoT.
2.	To study the M2M and NETCONF.	2. Explore the M2M and NETCONF.
3.	To understand python programming.	3. Explore python programming.
4.	To understand physical servers and cloud offerings.	4. Apply basic skills of IoT to solve real life problems.

<u>UNIT-1:</u>

Introduction & Concepts: Introduction to Internet of Things, Physical Design of IOT, Logical Design of IOT, IOT Enabling Technologies, IOT Levels. 5 Hrs.

<u>UNIT-2:</u>

Domain Specific IOTs: Home Automation, Cities, Environment, Energy, Retail, Logistics, Agriculture, Industry, Health & Life Style. 6Hrs

<u>UNIT-3:</u>

M2M & System Management with NETCONF-YANG: M2M, Difference between IOT and M2M, SDN and NFV for IOT, Software defined Networking, Network Function Virtualization, Need for IOT Systems Management, Simple Network Management Protocol, Limitations of SNMP, Network Operator Requirements, NETCONF, YANG, IOT Systems management with NETCONF-YANG. 7Hrs

<u>UNIT-4:</u>

Developing Internet of Things & Logical Design using Python: Introduction, IOT Design Methodology, InstallingPython, Python Data Types & Data Structures, Control Flow, Functions6Hrs

<u>UNIT-5:</u>

Python Modules, Packages, File Handling, Date/ Time Operations, Classes, Python Packages, IoT Device-Raspberry Pi, Programming Raspberry pi with Python **6Hrs**

<u>UNIT-6:</u>

IoT physical servers and cloud offerings, Introduction to cloud storage models and communication APIs, Python web application frame work-Django, Amezon web service for IoT **7Hrs**

Text book	S:								
1	Internet of Things: A Hands- On Approach	1 st edition 2015	by Arshdeep Bahga, Vijay Madisetti	Orient Blackswan Private Limited - New Delhi					
Reference	Reference books:								
1	Designing the Internet of Things	1 st edition	By Adrian McEwen	Wiley					
2	Python for Everybody		Charles R. Severance						

Etineleans.	Presents . Mat		1.00	Applicable for AY2021-22 Onwards	
Chairperson	Dean (Acad. Matters)	Date of Release	Version		

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics & Telecommunication Engineering

SoE and Syllabus

B.E Honors in Computer Vision and Automation

SoE No. HON-101

V Semester ETH132: Industrial Automation and Robotics

	Course Learning Objectives		Course Outcomes
	Students should be able to		Students will be able to
1.	Learn the basic Concept of Industrial Automation.	1.	Understand the Concept of Industrial Automation.
2.	Understand functioning of automation components.	2.	Identify the components required for automation
3.	Learn the programming related to automation and		systems.
	robotics.	3.	Write the program for PLC and Robotics.
4.	Understand the concept behind controlling systems.	4.	Design control system as per the application

UNIT I: Introduction: Automation overview, Requirement of automation systems, Architecture of Industrial Automation system, Introduction of PLC and supervisory control and data acquisition (SCADA). Industrial bus systems: modbus & profibus

UNIT II: Automation components: Sensors: temperature, pressure, force, displacement. Introduction to Actuators, process control valves. Introduction of DC and AC servo drives for motion control.

UNIT III : Programmable logic controllers: Programmable controllers, Programmable logic controllers, Analog digital input and output modules, PLC programming, Ladder diagram, Sequential flow chart, PLC Communication and networking, PLC selection, PLC Installation, Advantage of using PLC for Industrial automation, Application of PLC to process control industries.

UNIT IV : Introduction to robotics

Definition of a Robot - Basic Concepts - Robot configurations - Types of Robot drives - Basic robot motions - Point to point control - Continuous path control.

UNIT V: Components, Operations, Sensing and Machine Vision

Basic control system concepts - control system analysis - robot actuation and fed back, Manipulators - director and inverse kinematics, Coordinate transformation - Brief Robot dynamics. Types of Robot and effectors - Grippers - Tools as end effectors - Robot/End - effort interface.

Range sensing - Proximity sensing - Touch sensing - Force and Torque sensing.

UNIT VI: Robot Programming

Methods - languages - Capabilities and limitation - Artificial intelligence - Knowledge representation - Search techniques - A1 and Robotics.

Tex	Text books:								
1.	Industrial Instrumentation and Control		Third Edition 2009	S.K. Singh	The McGraw Hill Companies				
2.	2. Robotics Control, sensing, Vision and Intelligence		1987	K.S. Fu., R.C.Gonalez, C.S.G.Lee	McGraw Hill International Edition				
Etimelanny.		der	May 2021	1.00	Applicable for				
Chairperson		Dean (Acad. Matters)	Date of Release	Version					

(6 Hours)

(5 Hours)

(7 Hours)

(6 Hours)

.....

(6 Hours)

(6 Hours)

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) Department of Electronics & Telecommunication Engineering

SoE and Syllabus

B.E Honors in Computer Vision and Automation

SoE No. HON-101

Ref	Reference books:							
1.	Process Control Instrumentation Technology	2014 Eighth edition	C.D. Johnson	Prentice Hall of India.				
2.	Programmable logic controller	Fourth edition 2006	W. Bolton	ELSEVIER				
2.	Industrial control handbook	Third Edition 1998	E A Parr	Butterworth- Heinemann				
	Industrial robotics, technology, Programming and Applications	1986	Mikell P. Groover, mitchell Weiss	McGraw Hill International Edition				
	Robotic engineering - An Integrated Approach	1989	Richard D. Klafter, Thomas A. Chmielewski and Michael Negin	Prentice Hall Inc, Englewoods Cliffs, NJ, USA,				

	Sit	AY2021-22 Onwards
Chairperson Dean (Acad. Matters) Date of Release Version	Chairperson Dean (Acad. Matters)	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) Department of Electronics & Telecommunication Engineering

SoE and Syllabus

B.E Honors in Computer Vision and Automation

SoE No. HON-101

V Semester ETH133: Design Lab

Course Learning Objectives					Course Outcomes	
Students should be able to					Students will be able to	
1. Learn Python Programming		1.	1. Explore Python Programming			
2.	2. Understand the interfacing with the Raspberry pi		2.	2. Explore the interfacing with the Raspberry pi		
3. Learn the program for PLC and Robotics.		3.	3. Write the program for PLC and Robotics.			
4.	Understand	characteristics	of	automation	4.	4. Explore characteristics of automation
	components					components

Expt. No.	Name of Experiment
1	Experiment based on loops and functions in python.
2	To Interface LED with Raspberry pi.
3	To Interface DHT11 sensor with Raspberry pi.
4	Experiment based on File handling using Python.
5	To monitor temperature and humidity data remotely using things speak platform.
6	Experiment based on Integration of assorted sensors (IR, Potentiometer, strain gages etc.), micro controllers and ROS (Robot Operating System) in a robotic system.
7	Experiment based on Robot programming.
8	Measurement of Temperature using RTD.
9	Measurement of Strain using Strain Gauge or load cell
10	Study the characteristics of LVDT
11	Performed logical operation using Ladder Diagram.
12	Study of PLC Programmer
13	Mini-project

Turelanny.		May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) Department of Electronics & Telecommunication Engineering

SoE and Syllabus

B.E Honors in Computer Vision and Automation

SoE No. HON-101

VI Semester ETH141: Machine learning

	Students will be able to
1. Understand the concepts of machine learning and	1. Apply and analyze models using regression
regression models	2. Apply supervised and unsupervised learning for
2. Understand the concept of classification for model	problem solving
evaluation.	3. Apply neural network algorithms for
3. Learn Supervised and unsupervised learning	classification
algorithms.	4. Evaluate deep neural network with parameters
4. Learn the concept of artificial neural network and deep networks	computational complexity
Prerequisites: Basic probability and statistics, linear programming	algebra and calculus and some background in
UNIT I : Regression	
Supervised and Unsupervised learning, Regression, N	Iodel and Cost Function, Gradient Descent,
Multivariate Linear Regression, Feature Scaling	06Hrs
UNIT II : Classification	
Logistic Regression, Hypothesis Representation, Dec	ision Boundary, Cost Function and Gradient Descent,
Multiclass Classification, Regularization, Model Eval	uation
06Hrs	
06Hrs	
06Hrs UNIT III : Supervised Learning	
06Hrs UNIT III : Supervised Learning KNN, SVM, Decision Tree, Naïve Bayes Classifier, H	Random Forest 06Hrs
06Hrs UNIT III : Supervised Learning KNN, SVM, Decision Tree, Naïve Bayes Classifier, F UNIT IV : Unsupervised learning	Random Forest 06Hrs
06Hrs UNIT III : Supervised Learning KNN, SVM, Decision Tree, Naïve Bayes Classifier, F UNIT IV : Unsupervised learning K-means Clustering, Hierarchical Clustering, DBSC	Random Forest 06Hrs
06Hrs UNIT III : Supervised Learning KNN, SVM, Decision Tree, Naïve Bayes Classifier, H UNIT IV : Unsupervised learning K-means Clustering, Hierarchical Clustering, DBSC Detection	Random Forest 06Hrs CAN Clustering, Recommendation System, Anomaly 06Hrs
06Hrs UNIT III : Supervised Learning KNN, SVM, Decision Tree, Naïve Bayes Classifier, F UNIT IV : Unsupervised learning K-means Clustering, Hierarchical Clustering, DBSC Detection UNIT V: Artificial Neural Network	CAN Clustering, Recommendation System, Anomaly 06Hrs
06Hrs UNIT III : Supervised Learning KNN, SVM, Decision Tree, Naïve Bayes Classifier, F UNIT IV : Unsupervised learning K-means Clustering, Hierarchical Clustering, DBSC Detection UNIT V: Artificial Neural Network Introduction to Neural Network, Activation Functions	Random Forest 06Hrs CAN Clustering, Recommendation System, Anomaly 06Hrs 5, Perceptron Rule, Backpropogation 06Hrs
06Hrs UNIT III : Supervised Learning KNN, SVM, Decision Tree, Naïve Bayes Classifier, H UNIT IV : Unsupervised learning K-means Clustering, Hierarchical Clustering, DBSC Detection UNIT V: Artificial Neural Network Introduction to Neural Network, Activation Functions UNIT VI: Deep Learning	Random Forest 06Hrs CAN Clustering, Recommendation System, Anomaly 06Hrs 5, Perceptron Rule, Backpropogation 06Hrs
06Hrs UNIT III : Supervised Learning KNN, SVM, Decision Tree, Naïve Bayes Classifier, F UNIT IV : Unsupervised learning K-means Clustering, Hierarchical Clustering, DBSC Detection UNIT V: Artificial Neural Network Introduction to Neural Network, Activation Functions UNIT VI: Deep Learning Introduction to Deep Learning, Building Blocks of C	Random Forest 06Hrs CAN Clustering, Recommendation System, Anomaly 06Hrs 5, Perceptron Rule, Backpropogation 06Hrs CNN, Computational Complexity, CNN Architectures
06Hrs UNIT III : Supervised Learning KNN, SVM, Decision Tree, Naïve Bayes Classifier, F UNIT IV : Unsupervised learning K-means Clustering, Hierarchical Clustering, DBSC Detection UNIT V: Artificial Neural Network Introduction to Neural Network, Activation Functions UNIT VI: Deep Learning Introduction to Deep Learning, Building Blocks of C 06Hrs	Random Forest 06Hrs CAN Clustering, Recommendation System, Anomaly 06Hrs 5, Perceptron Rule, Backpropogation 06Hrs CNN, Computational Complexity, CNN Architectures
06Hrs UNIT III : Supervised Learning KNN, SVM, Decision Tree, Naïve Bayes Classifier, H UNIT IV : Unsupervised learning K-means Clustering, Hierarchical Clustering, DBSC Detection UNIT V: Artificial Neural Network Introduction to Neural Network, Activation Functions UNIT VI: Deep Learning Introduction to Deep Learning, Building Blocks of C 06Hrs	Random Forest 06Hrs CAN Clustering, Recommendation System, Anomaly 06Hrs 5, Perceptron Rule, Backpropogation 06Hrs CNN, Computational Complexity, CNN Architectures
06Hrs UNIT III : Supervised Learning KNN, SVM, Decision Tree, Naïve Bayes Classifier, H UNIT IV : Unsupervised learning K-means Clustering, Hierarchical Clustering, DBSC Detection UNIT V: Artificial Neural Network Introduction to Neural Network, Activation Functions UNIT VI: Deep Learning Introduction to Deep Learning, Building Blocks of C 06Hrs	Random Forest 06Hrs CAN Clustering, Recommendation System, Anomaly 06Hrs 3, Perceptron Rule, Backpropogation 06Hrs CNN, Computational Complexity, CNN Architectures
06Hrs UNIT III : Supervised Learning KNN, SVM, Decision Tree, Naïve Bayes Classifier, H UNIT IV : Unsupervised learning K-means Clustering, Hierarchical Clustering, DBSC Detection UNIT V: Artificial Neural Network Introduction to Neural Network, Activation Functions UNIT VI: Deep Learning Introduction to Deep Learning, Building Blocks of C 06Hrs	Random Forest 06Hrs CAN Clustering, Recommendation System, Anomaly 06Hrs 5, Perceptron Rule, Backpropogation 06Hrs CNN, Computational Complexity, CNN Architectures

Fineleans.	aler	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) Department of Electronics & Telecommunication Engineering

SoE and Syllabus

B.E Honors in Computer Vision and Automation

SoE No. HON-101

Text boo	ks:			
1	UnderstandingMachineLearning.https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html	2017	Shai Shalev-Shwartz and Shai Ben-David.	Cambridge University Press.
2	The Elements of Statistical Learning. <u>https://web.stanford.edu/~hastie/</u> <u>ElemStatLearn/</u>	2009	Trevor Hastie, Robert Tibshirani and Jerome Friedman.	Second Edition
3.	PatternRecognitionandMachine Learning.https://www.microsoft.com/en-us/research/people/cmbishop/downloads/	2006	Christopher Bishop.	Springer
			·	
Referenc	e books:			
1	Foundations of Data Science.	Januar y 2017	Avrim Blum, John Hopcroft and Ravindran Kannan.	
2	Deep Learning, Part II, http://www.deeplearningbook.or g/	2016	Goodfellow, I., Bengio, Y., Courville, A.	MIT Press
3	MachineLearning:AProbabilistic Perspective	2012	Kevin P. Murphy	MIT Press
4.	MACHINE LEARNING An Algorithmic Perspective	Second Edition	Stephen Marsland	Chapman & Hall/CRC

Timberry.	- All	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) Department of Electronics & Telecommunication Engineering

SoE and Syllabus

B.E Honors in Computer Vision and Automation

SoE No. HON-101

VI Semester ETH142 : Artificial Intelligence

Course Learning Objectives			Course Outcomes
Students should be able to			Students will be able to
1.	Learn the fundamentals of Artificial Intelligence,	1.	Apply basic of Artificial Intelligence programming
	Autonomous Agents.		techniques
2.	Learn the problem solving techniques.	2.	Solve the problems using different search
3.	Understand the Knowledge and Reasoning based		techniques.
	methods	3.	Describe the Knowledge and Reasoning based
4.	Study the machine learning and Natural Language		methods
	Processing.	4.	Describe the concept of Machine Learning and
			Natural Language Processing

UNIT 1: Introduction to AI and intelligent agents: reactive, deliberative, goal-driven, utility-driven, and learning				
agents, Artificial Intelligence programming techniques	(5 Hours)			
UNIT 2: Problem Solving: Solving Problems by Searching, heuristic search techniques, constraint	satisfaction			
problems, stochastic search methods. Game Playing: minimax, alpha-beta pruning.	(6 Hours)			
UNIT 3: Knowledge and Reasoning: Building a Knowledge Base: Propositional logic, first order				
Logic, situation calculus. Theorem Proving in First Order Logic. Planning, partial order planning.	(6 Hours)			
UNIT 4: Uncertain Knowledge and Reasoning, Probabilities, Bayesian Networks.	(7 Hours)			
UNIT 5: Machine Learning: Overview of different forms of learning, Learning Decision Trees, New	ural Networks			
	(6 Hours)			
UNIT 6: Introduction to Natural Language Processing, Deep Learning for Natural Language Processing,				
Computer Vision	(6 Hours)			

Text books:				
1	Artificial Intelligence: A Modern Approach	Stuart Russell and Peter Norvig	Prentice-Hall	
2	Artificial Intelligence: A New Synthesis	Nils J. Nilsson	Morgan- Kaufmann	
Reference books:				

1 Dr. Dheeraj Mehrotra	Basics of Artificial Intelligence & Machine Learnig,	Kindle Edition
------------------------	--	----------------

Chairperson Dean (Acad. Matters) Date of Release Version	Fineleans.	de	May 2021	1.00	Applicable for
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) Department of Electronics & Telecommunication Engineering

SoE and Syllabus

B.E Honors in Computer Vision and Automation

SoE No. HON-101

VI Semester ETH143 : Simulation Lab

Course Learning Objectives Students should be able to			Course Outcomes Students will be able to		
1.	Understand the concepts of regression models	1.	Implement and apply regression models		
2.	Learn neural network classification for machine learning	2.	Apply neural network algorithms for classification		
3.	Understanding clustering techniques and their utilization in machine learning	3.	Apply clustering techniques and their utilization		
4.	Solve the problems using search techniques and NLP	4.	Apply search techniques and NLP in problem solving		

Expt. No.	Name of Experiment
1.	Experiment based on linear regression
2.	Experiment based on Logistic regression
3.	Implementation of AND/OR/NOT Gate using Single Layer Perceptron: <u>http://vlabs.iitb.ac.in/vlabs-dev/labs/machine_learning/labs/exp1/index.php</u>
4.	Experiment based on gradient Descent
5.	Implementation of XOR Gate Using Multi-Layer Perceptron/ Error Back Propagation http://vlabs.iitb.ac.in/vlabs-dev/labs/machine_learning/labs/exp2/index.php
6.	Case study explaining function of Optical Character Recognition <u>http://vlabs.iitb.ac.in/vlabs-dev/labs/machine_learning/labs/exp11/index.php</u>
7.	Classify your uploaded image Python using TensorFlow 2 with Keras support https://www.kdnuggets.com/2020/05/interactive-machine-learning-experiments.html
8.	Experiment based on Clustering and dimension reduction
9.	Experiment based on Search Methods
10.	Experiment based on Deep Learning for Natural Language Processing
11.	Case study

	Turelanny.	de	May 2021	1.00	Applicable for
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	
_					

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics & Telecommunication Engineering

SoE and Syllabus

B.E Honors in Computer Vision and Automation

SoE No. HON-101

VII Semester ETH151: Database Management Systems

Course Learning Objectives	Course Outcomes			
Students should be able to	Students will be able to			
 Learn different database system concepts Learn the designing of Entity Relationship diagram. Know relational data model, relational algebra & SQL Queries. Understand relational database design. Know about data integrity issues. 	 Analyze & compare different levels of abstraction & data independence. Design Entity Relationship Diagram for any scenario. Solve queries based on relational algebra & SQL. Identify functional dependencies & normalise the database and apply ACID properties. Analyse transaction management, various concurrency control protocols and crash recovery methods. 			

UNIT I [05 Hrs]

Introduction to Database Management System: General File System and Database system Concepts and Architecture, Data Models, Schemas and Instances, Abstraction & Different Levels of Data Abstraction, Data Independence: Logical & Physical Independence.

UNIT II [06 Hrs]

Entity-Relationship Model: Entities and Entity Sets, Relationships and Relationship Sets, Attributes, Mapping Constraints, Keys, Entity Relationship Diagram, Reducing E-R Diagrams to Tables, Generalization, Aggregation, Design of an E-R Database Scheme.

UNIT III [06 Hrs]

SQL: Data definition language (DDL), Data Manipulation Language (DML), Basic structure of SQL Queries, Set operations, Null Values, Nested subqueries, views, modification of database, transaction, Joins.

Advanced SQL: SQL data types & schemas, Integrity Constraints, Domain Constraints, Assertions, triggers, Advanced SQL Features.

UNIT IV [07 Hrs]

Relational Data Model: Structure of Relational Databases

Relational Algebra: Structure of relational databases, Fundamental Relational-Algebra Operations, Additional relational algebra operations, extended relational algebra operations, modification of the databases.

UNIT V [06 Hrs]

Relational Database Design: Pitfalls in Relational Database Design, Functional Dependencies, Normalization using Functional Dependencies, Alternative Approaches to Database design.

Fineleans.	de	May 2021	1.00	Applicable for AY2021-22 Onwards
Chairperson	Dean (Acad. Matters)	Date of Release	Version	
		VOOF FT 40		

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

Department of Electronics & Telecommunication Engineering

SoE and Syllabus

B.E Honors in Computer Vision and Automation

SoE No. HON-101

Transaction Management: ACID Properties, Implementation of ACID Properties, Database processes to support ACID Properties, Schedules, and Testing of Serializability.

UNIT VI [06 Hrs]

Concurrency Control: Lock-based Protocols, Timestamp Based Protocols, Validation Techniques, Multiple Granularity, Multi version Timestamp Protocol, Transaction isolation levels, Read consistency. Crash Recovery: Failure Classification, Log Based Recovery, Buffer Management, Checkpoints, Shadow Paging.

TEXT BOOKS:

- 1. "Database System Concepts" Korth, Silberschatz: McGraw-Hill publication.
- 2. "Fundamentals of Database Systems ", Elmasri, Navathe & Gupta, Pearson Education.

REFERENCE BOOKS

- 1. Database System Concepts by Henry Korth and Others
- 2. Database Systems by Connolly, 3rd edition, Pearson Education.
- 3. Database Systems by S. K. Singh, Pearson Education.
- 4. Principles of Database Systems Ullman, Golgotia Publications 1998

Fineleans.	aller -	May 2021	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) Department of Electronics & Telecommunication Engineering

SoE and Syllabus

B.E Honors in Computer Vision and Automation

SoE No. HON-101

VII Semester ETH152: Database Management Systems

Course Learning Objectives	Course Outcomes		
Students should be able to	Students will be able to		
1) Learn Baseband representation, reception and	1) Distinguish various digital modulation		
probability of error	techniques.		
2) Understand the transmission errors in digital	2) Analyze the probability of errors in digital		
communication systems	communication systems.		
3) Understand the concept of spread spectrum	3) Apply spread spectrum modulation for various		
modulation, its types and applications.	applications of communication systems.		
4) Understand the practical applications of	4) Distinguish Multichannel and multicarrier		
Multichannel and multicarrier communication	communication systems		
systems			

Expt. No.	Name of Experiment
1	Designing of an ER Diagram.
2	Designing of Database Schema based on ER diagram.
3	Installation & Study of My-SQL
4	Implementation of different DDL commands.
5	Implementation of Constraints: Referential Constraints, Domain Constraints
6	Implementation of different DML Commands
7	Study and Implement Inner join.
8	Study and Implement Outer Join.
9	Case Study

	Etimelians.	- Alex	May 2021	1.00	Applicable for
	Chairperson	Dean (Acad. Matters)	Date of Release	Version	
-					