

Master of Technology SoE & Syllabus 2022

(Department of Electronics & Telecommunication)

M.Tech in Communication Engineering

Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.TECH. SCHEME OF EXAMINATION 2022 M. Tech. in Communication Engineering

				Contact Hours		0 III	% Wei	ghtage	ESE			
SN	Sem	Sub Code	Subject	T/P	-	Т	Р	Hrs	Credits	TA	ESE	Duration Hours
			I SEM	IESTE	R			1113	<u></u>		LUL	nours
1	1	22COM101	Probability & Stochastic Processes	Т	3	0	0	3	3	20	80	3 Hours
2	1	22COM102	Passive RF Circuits & Systems	Т	3	0	0	3	3	20	80	3 Hours
2	1	22COM102 22COM103	Lab: Passive RF Circuits & Systems	P	0	0	2	2		40	60	5110015
4	1	22COM103	Advanced Digital Communication	T	3	0	0	3	3	20	80	3 Hours
5	1	22COM105	Lab: Advanced Digital Communication	P	0	0	2	2	1	40	60	oriouro
			-		-	-				-		
6	1	22COM106	Adaptive Signal Processing	Т	3	0	0	3	3	20	80	3 Hours
7	1	22COM107	Lab: Adaptive Signal Processing	P	0	0	2	2	1	40	60	0.11
8	1		Professional Elective-I	T	3	0	0	3	3	20	80	3 Hours
9	1		Professional Elective- II Total	Т	3 18	0	0 6	3 24	3 21	20	80	3 Hours
			10141		10	v		24	21			
	List o	f Professiona										
	1	22COM111	PE I: Optical Communication & Networks									
	1	22COM112	PE I: RISC & CISC Processor									
	Listo	f Professiona	I Electives-II									
	1	22COM121	PE II: Active RF Devices and Circuits									
	1	22COM122	PE II: Soft Computing									
	I											
	1			IESTE		1	r —	r —		1		
1	2	22COM201	Antenna Design	Т	3	0	0	3	3	20	80	3 Hours
2	2	22COM202	Lab: Antenna Design	Р	0	0	2	2	1	40	60	
3	2	22COM203	VLSI Signal Processing	Т	3	0	0	3	3	20	80	3 Hours
4	2	22COM204	Digital Image and Video processing	Т	3	0	0	3	3	20	80	3 Hours
5	2	22COM205	Lab: Digital Image and Video processing	Р	0	0	2	2	1	40	60	
6	2	22COM206	Wireless Communication Network	Т	3	0	0	3	3	20	80	3 Hours
7	2		Professional Elective -III	т	3	0	0	3	3	20	80	3 Hours
8	2		Professional Elective -IV	Т	3	0	0	3	3	20	80	3 Hours
9	2	22COM207	Seminar	Р	0	0	2	2	1	40	60	
			Total		18	0	6	24	21			
		f Professiona										
	2	22COM211	PE III: Millimeter wave communication PE III: Real Time Operating System									
	2		FE III. Real Time Operating System									
	List o	f Professiona	I Electives-IV									
	2	22COM221	PE IV: Selected Topics in Communication	Syster	ns							
	2	22COM222	PE IV: Micro Electro Mechanical Systems									
			III SEI	MESTE	ER							
				-			-	-				
3	3	22COM301	Project Phase-I	Р	0	0	16	16	8	60	40	
				I	•	•	40	40	0		1	<u> </u>
			Total		0	0	16	16	8			
			IV SEI	MESTI	ER							
1	4	22COM401	Project Phase-II	Р	0	0	24	24	12	60	40	
1	-	2200101401	· ·	L'							40	
			Total		0	0	24	24	12			
			Grand Total of Credits		36	0	52	88	62			
				1				1				
V.	_	D .	N 8							Applicable for		
9	Elia	cleary.	de		June	, 2022			1.00		Applicat	ole for
9	Efin	person	Dean (Acad. Matters)		June	, 2022			1.00			ble for Onwards

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering

M.Tech in Communication Engineering

SoE No. 22COM-101

6 Hours

7 Hours

7 Hours

6 Hours

6 Hours

6 Hours

38 Hours

I Semester

22COM101- Probability & Stochastic Processes

Course Outcomes:

Upon successful completion of the course the students will be able to

- 1. Calculate probabilities by applying probability laws.
- 2. Derive probability distributions of functions of random variables.
- 3. Identify an appropriate probability distribution for a given discrete or continuous random variable.

Unit:1 Probability

Sets, fields, sample space and events; axiomatic definition of probability. Combinatory: Probability on finite sample spaces. Joint and conditional probabilities, independence, total probability; Bayes' rule and applications

Unit:2 Random variables

Definition of random variables, continuous and discrete random variables, cumulative distribution function (cdf) for discrete and continuous random variables; probability mass function (pmf); probability density functions (pdf) and properties. Jointly distributed random variables, conditional and joint density and distribution functions, independence; Bayes' rule for continuous and mixed random variables.

Unit:3 Function of Random variables

Uniform, Gaussian and Rayleigh distributions; Binomial, and Poisson distributions; Multivariate Gaussian distribution Functions of a random variable, Functions of two random variables; Sum of two independent random variables.

Unit:4 Expectations and Introduction to Estimation

Expectation: mean, variance and moments of a random variable. Joint moments, conditional expectation, Moment generating and characteristic function

Unit:5 Introduction to Stochastic Processes

Definition and examples of SPs, classification of random processes according to state space and parameter space, types of SPs, elementary problems.

Unit :6 Random Processes

Discrete-time Markov Chains (MCs), Continuous-time Markov Chains (MCs), Brownian Motion, Stationary Processes Contemporary Issues related to Topic

Total Lecture Hours

Timberry.	Mes .	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-1		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

Tex	tbooks
1	Probability and Random Processes with Applications to Signal Processing, Henry Stark, J.W.Woods, Pearson
	Education, 3rd edition, 2001.
2	Probability, Random variables and Stochastic Processes, A.Papoulis , McGraw Hill, 3rd edition, 1991.
Ref	erence Books
1	P.Z. Peebles. Jr., PROBABILITY, RANDOM VARIABLES AND RANDOM SIGNAL PRINCIPLES, Tata
	McGraw Hill Education, 3rd edition, 2002.
YC	CE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS]
1	
MO	OCs Links and additional reading, learning, video material
1	https://nptel.ac.in/courses/111102111
2	https://nptel.ac.in/courses/108106106

Etinelawry.	de	July 2022	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards		
YCCE-COM-2						

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

6 Hours

6 Hours

6 Hours

6 Hours

6 Hours

36 Hours

I Semester 22COM102- Passive RF Circuits & Systems

Course Outcomes:

Unit:1 | Transmission Lines

Upon successful completion of the course the students will be able to

- 1) Analyze various transmission lines and its characteristics.
- 2) Analyze various microwave network models and passive components.
- 3) Apply the knowledge of various switches, phase shifters and MIC filters.
- 4) Explore various MMIC and MEMS technologies.

Review of Basic Transmission Line Theory, Planar Transmission Lines - Stripline, microstrip line, Suspended strip line and coplanar line; Parallel coupled lines in Stripline and microstrip – Analysis, Design and characteristics.

Unit:2	Networks
--------	----------

Microwave Network Analysis - Microwave network representation, Impedance and admittance matrices, Scattering parameters, Typical two-port, three port, four port networks; Impedance Matching Techniques - Smith chart, Matching networks using lumped elements, Single- and double-stub matching, Quarter wave transformer, Baluns

Unit:3	Passive Components	6 Hours
Basic P	assive Components -Lumped elements in MIC, Discontinuities and resonators in microstrip, A	Analysis and
design	of Stripline/microstrip components- Directional couplers, Power divider, Hybrid ring.	

Unit:4 Switches and Phase Shifters

Switches and Phase Shifters Basic series and shunt switches in microstrip; SPST and SPDT switches, Switched line, branch line coupled and loaded line phase shifters in microstrip, Applications in phased arrays.

Unit:5 MIC Filters

MIC Filters - Lumped element filter design at RF. Impedance and Low pass scaling, Frequency transformation, High impedance/Low impedance low pass filter, Parallel coupled band pass filter, High pass filter, band stop filter

Unit :6 MIC Technology

MIC Technology Hybrid MIC's, Monolithic MIC technology, – Thick film and Thin film technology, Introduction: RF MEMS for microwave applications, MEMS technology and fabrication

Total Lecture Hours

	2010 1 Mar					
There leavers .	aller	July 2022	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards		

YCCE-COM-3

1

2

1

1

2

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) **Department of Electronics & Telecommunication Engineering**

M.Tech in Communication Engineering

SoE No. 22COM-101

Textbooks M.M. Radmanesh, Radio Frequency and Microwave Electronics, Pearson Education Asia, 2001. B. Bhat & S.K. Koul, Stripline-like Transmission Line for Microwave Integrated Circuits, New Age Intl. (P) Ltd., 1989. **Reference Books** D. K. Misra, Radio Frequency and Microwave Communication Circuits - Analysis and Design, John Wiley & Sons, 2001. YCCE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS] http://103.152.199.179/YCCE/Suported%20file/Supprted%20file/ecopies%20of%20books/Electronics%20Engineering/73.john1.wiley.and.sons.rf.mems.and.their.applications.e book-lib.pdf http://103.152.199.179/YCCE/Suported%20file/Supprted%20file/ecopies%20of%20books/Electronics%20Engineering/81.microwave-devices-and-circuits-samuel-liao.pdf MOOCs Links and additional reading, learning, video material

https://youtu.be/KUDGGsyh1Hs 1

https://youtu.be/ZZEZUysFPDY 2

3 https://youtu.be/u59IUA6uvjk

Etingleway.	April	July 2022	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards		
YCCE-COM-4						

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

I Semester 22COM103 – Lab: Passive RF Circuits & Systems

Course Outcomes:Upon successful completion of the course the students will be able to1)Analyze various transmission lines and its characteristics.2)Analyze various microwave network models and passive components.3)Apply the knowledge of various switches, phase shifters and MIC filters.4)Explore various MMIC and MEMS technologies.

Sr. No.	Experiments based on
1	Low Pass, Band Pass, Band Stop Filters
2	Couplers
3	Phase Shifter
4	Power Divider
5	Hybrid ring Coupler
6	Switches

Finelans.	apel	July 2022	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards		
YCCE-COM-5						

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) **Department of Electronics & Telecommunication Engineering M.**Tech in Communication Engineering

SoE No. 22COM-101

I Semester 22COM104 – Advanced Digital Communication

Course Outcomes:

Upon successful completion of the course the students will be able to

- 1. Construct time- and frequency-domain models for digital communications systems with linear channels and additive noise.
- 2. Design the optimal receiver when the noise is Gaussian.
- 3. compare the performance of the spread spectrum communication systems
- 4 Evaluate the performance of multicarrier & Multichannel communication systems

Unit:1 Introduction to Digital Communication

Review of fundamental concepts and parameters in Digital Communications, Performance of BPSK and OPSK in AWGN channel, Performance of binary FSK and M-ary PSK in AWGN channel.

Unit:2 Modulation

Minimum Shift Keying (MSK) Modulation, GMSK, Continuous Phase Modulation (CPM) Schemes Channel Characterization and Modeling, Orthogonal Frequency Division Multiplexing (OFDM), Carrier Synchronization, Timing synchronization.

Unit:3 | Band pass signals and Systems

Representations of band pass signal and systems, signal space representation, representation of digitally modulated signals, spectral characteristics of digitally modulated signals.

Unit:4 Baseband reception and probability of error

the ML and MAP detection strategies, ML detection with zero mean AWGN, the optimum filter, Schwarz's inequality, transfer function of optimum filter, matched filter, properties of Matched filter, correlation receiver, equalization, the zero forcing equalizer, adaptive equalizer, scrambling, the eye pattern

Unit:5 | Spread Spectrum Communication

Spread spectrum signals for digital communications: Introduction to Spread Spectrum Modulation, DSSS, FHSS, and CDMA signals, Code Acquisition and Tracking, Spread Spectrum as a Multiple Access Technique

Unit :6 **Multichannel and Multicarrier Systems**

Digital Communications through Fading Multipath channels; Multi User Communications **Contemporary Issues related to Topic**

Total Lecture Hours

ETurchamps. July 2022 1.00 Applicable for AY 2022-23 Onwards Chairperson Dean (Acad. Matters) Date of Release Version YCCE-COM-6

6Hours

6 Hours

6 Hours

6 Hours

6 Hours

6 Hours

36 Hours

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

Tex	tbooks
1	Digital Communications 1995 4 th Edition J.G.Proakis McGraw Hill,
2	Digital Communications 1998 Simon Haykin John Wiley & Sons
Ref	erence Books
1	Principles of Digital Communications and Coding 1979 J. Viterbi and J. K. Omura McGraw Hill,
2	Spread Spectrum Communications 1995. MarvinK.Simon,Jim K Omura, RobertA. Scholtz, Barry K.Levit John
	Wiley
	& Sons
3	CDMA Principles of Spread Spectrum Communications 1995. Andrew J Viterbi Addison Wesley
YC	CE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS]
1	http://103.152.199.179/YCCE/Suported%20file/Supprted%20file/SERIES%20WISE%20BOOKS/COMMUNICATION
	<u>%20ENGINEERING%20(PG)/COMM</u>
MO	OCs Links and additional reading, learning, video material
1	https://nptel.ac.in/courses/117101051
2	https://nptel.ac.in/courses/117105144

Etimelany.	der	July 2022	1.00	Applicable for		
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards		
YCCE-COM-7						

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

I Semester 22COM105 – Lab: Advanced Digital Communication

Course Outcomes:

Upon successful completion of the course the students will be able to

- 1) Construct time- and frequency-domain models for digital communications systems with linear channels and additive noise.
- 2) Design the optimal receiver when the noise is Gaussian.
- 3) compare the performance of the spread spectrum communication systems
- 4) Evaluate the performance of multicarrier & Multichannel communication systems

Sr. No.	Name of Experiments
1	Implement generation of ASK signal
2	Implement generation of BPSK signal
3	Write Program for BER of BPSK signal
4	Write Program for BER of QPSK signal
5	Write Program for BER of BPSK using OFDM
6	Write Program for Matched filter receiver
7	Write Program for finding channel noise and ISI using eye diagram
8	Perform practical on the data scrambler and descrambler.
9	Perform a Monte Carlo simulation of an M=8 QAM communication system.
10	Implement generation of discrete time signal.

Etimeleury.	aler	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-8		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

7 Hours

6 Hours

7 Hours

6 Hours

7 Hours

6 Hours

39 Hours

I Semester 22COM106 – Adaptive Signal Processing

Course Outcomes:

Upon successful completion of the course the students will be able to

- 1. Devise filtering solutions for optimising the cost function using wiener filters.
- 2. Analyze convergence and stability issues using LMS algorithm and its transform domain.
- 3. Evaluate the performance Recursive Least-Squares (RLS) techniques to improve convergence behaviour.
- 4. Devise filtering solutions for optimizing using Lattice and Kalman Filtering.
- 5. Devise filtering solutions for optimizing using FTRLS algorithm.

Unit:1 Adaptive Filters

Introduction to Adaptive Filters, Stochastic Processes, and Adaptive beam forming, Wiener filter: Mean-Squared Error Criterion, Wiener Filter – Transversal, Real-Valued Case, Principle of Orthogonality, Normalized Performance Function, Unconstrained Wiener Filters, Performance Function, Optimum Transfer Function, Modelling, Inverse Modelling and Noise Cancellation.

Unit:2 LMS algorithm

LMS algorithm: Derivation of LMS Algorithm, Average Tap-Weight Behavior of the LMS Algorithm, MSE Behavior of the LMS Algorithm, Simplified LMS Algorithms, Normalized LMS Algorithm

Unit:3 Transform Domain Adaptive Filters

Overview of Transform Domain Adaptive Filters, Band-Partitioning Property of Orthogonal Transforms, Orthogonalization Property of Orthogonal Transforms, Transform Domain LMS Algorithm, Ideal LMS-Newton Algorithm and Its Relationship with TDLMS, Selection of the Transform T.

Unit:4 Method of Least-Squares

Formulation of Least-Squares Estimation for a Linear Combiner, Principle of Orthogonality, Projection Operator, Standard Recursive Least-Squares Algorithm, Convergence Behavior of the RLS Algorithm,

Unit:5 Lattice and Kalman Filters

Forward Linear Prediction, Backward Linear Prediction, Relationship Between Forward and Backward Predictors, Prediction-Error Filters. Kalman filtering

Unit :6 Fast RLS Algorithms

Least-Squares Forward Prediction, Least-Squares Backward Prediction, Least-Squares Lattice, RLSL Algorithm, FTRLS Algorithm.

Contemporary Issues related to Topic

Total Lecture Hours

Etimeleury.	apr	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-9		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

Tex	tbooks
1	B. Farhang Boroujeny, Adaptive Filters: Theory & Applications, 2 nd edition, Wiley Publication, 2013
2	Simon Haykin, Adaptive Filter Theory, 3 rd edition Prentice Hall, 1996
Ref	erence Books
1	G. Manolakis, Statistical and Adaptive Signal Processing, McGraw Hill
2	Alexsander S.T, Adaptive Filters: Theory & Applications, springer verlag, 2012
3	M. H. Hays, Statistical Digital Signal Processing and Modeling, John Wiley
YC	CE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS]
1	http://103.152.199.179/YCCE/yccelibrary.html
MC	OCs Links and additional reading, learning, video material
1	https://nptel.ac.in/courses/117/105/117105075/

Etinelaway.	april .	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-10		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

I Semester 22COM107 – Lab: Adaptive Signal Processing

Course Outcomes:

Upon successful completion of the course the students will be able to

- 1. Devise filtering solutions for optimising the cost function using wiener filters.
- 2. Analyze convergence and stability issues using LMS algorithm and its transform domain.
- 3. Evaluate the performance Recursive Least-Squares (RLS) techniques to improve convergence behaviour.
- 4. Devise filtering solutions for optimizing using Lattice and Kalman Filtering.
- 5. Devise filtering solutions for optimizing using FTRLS algorithm.

Sr. No.	Experiments List
1	To implement the wiener filter and check mean square error
2	Write a program for noise cancellation
3	To implement LMS algorithm & plot the learning curve.
4	Write a program for Channel Equalizer using LMS
5	Implement Transform Domain LMS algorithm using DCT
6	Implement Recursive Least Square Algorithm.
7	To perform principle of orthogonality(RLS)
8	To Steady State Kalman Filter Design
9	To study Time Varying Kalman Filter Design
10	Implement Kalman Filter for Linear Gauss Markov System

Finelans.	apel	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-11		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering

M.Tech in Communication Engineering

SoE No. 22COM-101

6 Hours

6 Hours

6 Hours

6 Hours

6 Hours

6 Hours

36 Hours

I Semester

22COM111 – PE I: Optical Communication & Networks

Course Outcomes:

Upon successful completion of the course the students will be able to

1. Elaborate with basic concepts and theory of Optical Communication.

2. Illustrate various methods of fiber manufacturing

3. Compare different source of light as well as various detectors

4.Illustrate various transmissions links and optical networks

Unit :1 Basic concepts of optical communication

Basic concepts of optical communication. The nature of light. Light as an Electromagnetic Wave, Polarisation, Interference. Transmitting light on a Fibre Refractive index, Fibre refractive index profiles, Modes of propagation. Light Propagation in Multimode Fibre, Snell's Law Critical Angle, Numerical aperture.

Unit:2 Fiber materials

Fiber materials, Fiber drawing apparatus, Outside Vapor, Phase Oxidation, Vapor Phase Axial Deposition, Double Crucible Method, Modified Chemical Vapor Deposition, Plasma Activated Chemical Vapor Deposition, Fiber Buffering, Optical Fiber Cable structure

Unit:3 Optical Sources

Optical Sources: Light Emitting Diodes (LEDS), The Semiconductor Junction Diode, Construction and Operation of LED's , Heterojunctions (Practical LED's) , Characteristics of LED'S, Lasers, Principle of the LASER, Semiconductor Laser Diodes

Unit:4 Optical Detectors

Optical Detectors: Photoconductors, Photodiodes, P-N Diodes, P-I-N Diodes, Schottky-Barrier Photodiodes, Avalanche Photodiodes (APDS), Hetero-interface Photodetectors, Phototransistors

Unit:5 Optical Communication Systems

Optical Communication Systems: Point-to-point Transmission Systems, Modulation techniques, Onoff key, line coding, Forward Error correction, Receiving the signal, Timing recovery.

Unit:6 Optical Networks

Optical Networks: System design consideration, Point – to –Point link design, WDM, Elements of optical networks, SONET/SDH. Optical Interfaces, SONET/SDH Rings and Networks, High speed light wave Links, Optical ETHERNET-Solution.

Contemporary Issues related to Topic

Total Lecture Hours

Etimelanny.	all -	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		VCCE COM 12		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

Tex	xtbooks
1	Optical Fiber Communication Third Edition Gerd Keiser, McGraw-Hill International,
2.	Optical Communication, Principles and Practice. Third Edition J.Senior Prentice Hall of India
Ref	Serence Books
1	Optical Communication System J. Gower Prentice Hall of India
2	Fiber-Optic Communication System Third Edition GovindAgrawal John Willy & Sons
3	Optical communication systems J. Gower, PHI
4	Optical Fiber System Kao Tata Mc Graw Hill
YC	CE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS]
1	
M	DOCs Links and additional reading, learning, video material
1	https://onlinecourses.nptel.ac.in/noc22_ee88 Fiber Optic Communication Technology - Course (nptel.ac.in)

Etimoleums.	April	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-13		

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

5 Hours

7Hours

6Hours

5 Hours

5 Hours

8 Hours

36 Hours

I Semester

22COM112 – PE I: RISC & CISC Processor

Course Outcomes:

Upon successful completion of the course the students will be able to

- 1. Explore different technologies related to embedded systems
- 2. Effectively utilise the knowledge gained about RISC processor architecture and its instruction set for programming.
- 3. Explore basics of CISC processor architecture
- 4. Effectively utilise the knowledge gained about CISC processor and its instruction set for programming

Unit:1 Overview of embedded systems

Embedded Systems, Introduction, Design Metrics, Processor Technology, IC Technology, Design Technology, Design Productivity Gap, Custom Single purpose Processor Design, RT level design, FSMD, Data-paths, Optimization, Instruction set simulators for simple processors.

Unit:2 Architectural Features Of RISC PROCESSORS

The ARM processor - Register organization, Processor modes Exceptions and their handling, Memory-mapped I/Os, ARM and THUMB instruction sets, Addressing modes, DSP extensions, programming examples

Unit:3 ARM7/9 Core

H/W architecture, Timing diagrams for Memory access, Co-processor interface, Debug support, Scan chains, Embedded Real Time ICE, Hardware and software breakpoints. Buses: AMBA, ASB, APB, Development tool like Compilers, Debuggers, IDE

Unit:4 ARM Cortex – M series

Introduction to the ARM Cortex M4 and its targeted applications, ARM Cortex M4 architecture address space, onchip peripherals (analog and digital) Register sets, addressing modes and instruction set basics.

Unit:5 Fundamentals of CISC processors

The CISC processor :-DSP processor- MAC, Modified bus structures and Memory access schemes, Multiple access Memory , Multiported memory, VLIW architecture, Pipelining, Special addressing modes, On chip peripherals.

Unit :6 32- bit DSP processor

Introduction to TI DSP processor family VLIW architecture and TMS320C6000 series, architecture study, data paths, cross paths, Introduction to Instruction level architecture of C6000 family, instruction set & programming examples, On chip peripherals

Contemporary Issues related to Topic

Total Lecture Hours

Elinelanny.	all .	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-14		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

Тех	tbooks		
1	Sloss Andrew N, Symes Dominic, Wright Chris ARM System Developer's Guide: Designing and		
	Optimizing, Morgan Kaufman Publication		
2	Steve Furber ,ARM System-on-Chip Architecture, 2nd Edition,2002, Pearson Education		
3.	Frank Vahid and Tony Givargis, Embedded System Design, 2002, 1st Edition, Wiley Publication		
4.	Venkataramani, M Bhaskar, Digital signal processors, 2002, 1st edition, Tata McGraw Hill		
5	Jonathan W. Valvono "Introduction to ARM Cortex-M Microcontrollers", 2014, 5th Edition, Create Space		
	Independent Publishing Platform, United States.		
Dof	erence Books		
1	Raj Kamal, Embedded System Design, 2003, Tata McGraw Hill		
YC	CE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS]		
1	http://link.springer.com/openurl?genre=book&isbn=978-1-4614-4893-8		
2.	http://link.springer.com/openurl?genre=book&isbn=978-1-4020-5868-4		
3	http://link.springer.com/openurl?genre=book&isbn=978-0-387-25280-3		
4	http://link.springer.com/openurl?genre=book&isbn=978-1-4614-3142-8		
MC	MOOCs Links and additional reading, learning, video material		
1	https://swayam.gov.in/explorer?searchText=embedded		
2	Technical references and user manuals on www.arm.com, NXP Semiconductor www.nxp.com and Texas		
	Instruments www.ti.com		
L			

Etimeleury.	apel	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-15		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) **Department of Electronics & Telecommunication Engineering**

M.Tech in Communication Engineering

SoE No. 22COM-101

I Semester

22COM121 – PE II: Active RF Devices and Circuits

Course Outcomes:

Upon successful completion of the course the students will be able to

1 Analyse modelling of semiconductor Device.

- 2. Design Two Port power gain Amplifier for Stability and Gain.
- 3. Estimate the efficiency for RF Power Amplifier.
- 4. Analyse Characteristics and equivalent circuit of detector and Mixer
- 5. Describe Oscillator circuits and Phase Lock Loop

Unit:1 Active RF Component & their Modelling

Active RF Component & their Modelling: RF Diodes, Linear & Non-linear Diode Models, small & large signal Model of BJT & FET.

Unit:2 Transistor Amplifiers

Types of amplifiers. S parameter characterization of transistors; Two Port power gain Amplifier Stability, Stability Circle, Test for Unconditional Stability, MOSFETs, Equivalent circuit model.

Unit:3 | Transistor Amplifier Design

Single stage amplifier design for Unilateral and bilateral cases, Design for Maximum Gain, Constant gain, Design for Specified Gain, DC bias circuits for Transistor, Low Noise Amplifier Design.

Unit:4 | RF Power amplifier

Introduction, Class A, B, AB, C, Class D Amplifier, Class E Amplifier, Class F Amplifier. Modulation of Power amplifier.

Oscillators Unit :5

Feedback and Basic Concepts, Crystal Oscillators, Electronic Tuning of Oscillators; Phase-Locked Loop; Frequency Synthesizers; One-Port Negative Resistance Oscillators; Microwave Transistor Oscillators. **Contemporary Issues related to Topic**

Unit:6 **Detectors & Mixers**

Point contact and Schottky barrier diodes. Characteristics and equivalent circuit, Theory of microwave detection, Detector circuit design, FM detectors. Mixer theory and characteristics. SSB versus DSB mixers. Single-ended mixer and single-balanced mixer. Double balanced and image rejection mixers. 06 Hrs **Contemporary Issues related to Topic**

Total Lecture Hours

July 2022 1.00 Applicable for AY 2022-23 Onwards Chairperson Dean (Acad. Matters) Date of Release Version

YCCE-COM-16

06 Hours

36 Hours

06 Hours

06 Hours

06 Hours

06 Hours

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

Tex	tbooks
1	D. K. Misra, John Wiley, Radio Frequency and Microwave Communication Circuits Analysis and Design, 2004.
2	D. M. Pozar, Microwave Engineering, John Wiley, 1998.
3	Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Second Edition, , CAMBRIDGE,1998
Ref	erence Books
1	G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice Hall, 1997
2	Renhold Ludwig and Pavel, Bretchko, RF Circuits Design, Prentice Hall
3	S.K. Koul and B. Bhat, Microwave and Millimeter Wave Phase Shifters, Vol.II- Semiconductor And Delay Line Phase Shifters, Artech House 1991.
YC	CE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS]
1	http://103.152.199.179/YCCE/Suported%20file/Supprted%20file/e-
	copies%20of%20books/Electronics%20and%20Telecommunication/
MO	OCs Links and additional reading, learning, video material
1	https://www.digimat.in/nptel/courses/video/117102012/L01.html

Finelans.	apr	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-17		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

6 Hours

6 Hours

6 Hours

6 Hours

6 Hours

6 Hours

36 Hours

I Semester 22COM122 – PE II: Soft Computing

Course Outcomes:

Upon successful completion of the course the students will be able to

CO1: Describe genetic techniques and their roles in soft computing.

CO2: Identify supervised/unsupervised neural networks algorithms to solve pattern classification problems.

CO3: Apply fuzzy logic and reasoning to handle uncertainty and solve engineering problems.

Unit:1 Genetic algorithms

Population based search techniques, evolutionary strategies, mathematical foundations of genetic algorithms, search operators, genetic algorithms in function and combinational optimization, hybrid algorithms, application to pattern recognition.

Unit:2 Supervised Learning

NN Architecture Neural learning and laws, Applications of ANN Evaluation of network, Single layer network: MP neuron, Perceptron, Perceptron training algorithm, LMS algorithm, ADALINE

Unit:3 Multiplayer Network

Multilevel Discrimination, Backpropogation Algorithm, Setting the parameter values, Accelerating the learning Process, MADALINE, Adaptive Multilayer Networks, Recurrent Network, RBF networks.

Unit:4 Unsupervised Learning and Deep Learning

Winner Take Network, Learning Vector Quantizer, ART Networks, self-organizing feature maps, PCA, Associate Models, Introduction to Deep Learning

Unit:5 Fuzzy Set Theory

Overview of Crisp Sets, Concepts of Fuzzy sets, representation of fuzzy sets, extension principle, fuzzy compliments, t-norms and t- conorms Fuzzy numbers, arithmetic operation on intervals and on fuzzy sets, lattice of fuzzy numbers

Unit :6 Fuzzy Controller

Fuzzy equations, fuzzy relations, Fuzzy controllers, Defuzzification Methods, Fuzzy Inference Techniques, applications of fuzzy logic, Learning and Statistical Approaches to Regression and Classification

Total Lecture Hours

Etinelaway.	all .	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-18		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

Tex	tbooks
1	Fuzzy sets and Fuzzy logic, George Klir, Bo Yuan, PHI
2	Elements of Artificial Neural Network, K. Mehrotra, MIT, Cognet
Ref	erence Books
1	Neural Networks, a comprehensive foundation, By Simon Haykins, PHI,
2	Fuzzy Logic & Applications, J. Ross, TMH/Mc
3	Neural Networks, Fuzzy Logic and Genetic Algorithms, Synthesis and Applications, S.
	Rajshekharan, Vijayalakshmi Pai
4	An Introduction to Genetic Algorithm Melanic Mitchell (MIT Press)
YC	CE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS]
1	http://link.springer.com/openurl?genre=book&isbn=978-3-642-21331-1
MC	OCs Links and additional reading, learning, video material
1.	https://nptel.ac.in/courses/106105173
2.	https://onlinecourses.nptel.ac.in/noc22_cs54/preview
3.	https://archive.nptel.ac.in/noc/courses/noc19/SEM1/noc19-cs23/
4.	https://archive.nptel.ac.in/courses/106/105/106105173/

Turcherry.	apr	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-19		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

6 Hours

6 Hours

6 Hours

6 Hours

II Semester

22COM201 - Antenna Design

Course Outcomes:

Upon successful completion of the course the students will be able to

- 1. Understand the Antenna Fundamentals.
- 2. Design and Analysis of Microstrip Antenna and antenna arrays.
- 3. Analysed of Field equivalence Principle and its applications.
- 4. Understand the smart antenna system design.

Unit :1 ANTENNA FUNDAMENTALS

Introduction to antenna, need of Antenna, Types of antennas, Radiation Integrals & Auxiliary Potential Function, Half wave Dipole Antenna

Unit:2 PLANER ANTENNA

Planar Antennas Microstrip rectangular and circular patch antennas. Analysis and design, Feeding Methods; Circularly polarized Microstrip antennas, Broadbanding techniques, Impedance matching techniques.

Unit:3 FREQUENCY DEPENDENT AND INDEPENDENT ANTENNA

Yagi array of linear elements, folded dipole and printed version, Log-periodic dipole array. Frequency Independent Antennas, Planar – spiral antenna

Unit:4 ANTENNA ARRAYS

Forms of Antenna Arrays, Array of point sources, Linear array; Broadside and end fire arrays, Planar array, beam width, directivity. Microstrip arrays, feed networks & its analysis.

Unit:5 APERTURE AND REFLECTOR ANTENNAS

Aperture Antennas- Field equivalence principle, Babinet's principle. Rectangular waveguide horn antenna, Parabolic reflector antenna. Uniqueness theorem.

Unit:6 SMART ANTENNA

Antennas for mobile communication. Handset antennas: FIFA, Smart antennas, Switch beam system, Antenna beam forming and beam steering, Adaptive array system, Spatial Division Multiple Access. **Contemporary Issues related to Topic**

Total Lecture Hours

Etimeleury.	apr	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-20		

6 Hours

6 Hours

36 Hours

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

ha Theory - C.A. Balanis, John Wiley and Sons has and Wave Propagation – K.D. Prasad, Satya Prakashan, Tech India Publications, New Delhi, 2001. Books has – John D. Kraus, McGraw-Hill, has and Radio Propagation- R.E. Collins, McGraw-Hill
Books has – John D. Kraus, McGraw-Hill,
aas – John D. Kraus, McGraw-Hill,
as and Radio Propagation- R.E. Collins, McGraw-Hill
band Antenna Techniques by Girish Kumar, Artech House publication.
brary book links [ACCESSIBLE FROM COLLEGE CAMPUS]
ink.springer.com/openurl?genre=book&isbn=978-1-4419-5338-4
ink.springer.com/openurl?genre=book&isbn=978-1-4757-2760-9
ink.springer.com/openurl?genre=book&isbn=978-1-4614-7998-7
ink.springer.com/openurl?genre=book&isbn=978-0-7923-7241-7
ink.springer.com/openurl?genre=book&isbn=978-1-4020-8417-1
nks and additional reading, learning, video material
nptel.ac.in/courses/108101092

Etimelanny.	der	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-21		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

II Semester

22COM202 - Lab: Antenna Design

Course O	outcomes:
Upon suc	cessful completion of the course the students will be able to
1. U	nderstand the Antenna Fundamentals.
2. D	esign and Analysis of Microstrip Antenna and antenna arrays.
3. A	nalysed of Field equivalence Principle and its applications.
4. U	nderstand the smart antenna system design.
Sr. No.	Experiments based on
1	To design and Simulate Patch Antenna with Probe Feed using Simulation software.
2	To performed parametric analysis of Patch Antenna using Simulation software.
3	To design and Simulate Patch Antenna with Microstrip Feed line using Simulation software.
4	To design and Simulate Lambda/2 Dipole Antenna using Simulation software and study it's Characteristic.
5	To design and Simulate Yagi-Uda Antenna using Simulation software and study it's Characteristic.
6	To design and Simulate Horn Antenna using Stimulation software and study it's Characteristic.
7	To design and Simulate parabolic Reflector using Stimulation software and study it's Characteristic.
8	To measure radiation Pattern of Yagi-Uda Antenna and its Characteristic using Antenna trainer Kit.
9	Measurement of Antenna Parameter Using Vector Network Analyser.
10	Mini Project on antenna.

Turcherry.	ales	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-22		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

36 Hours

II Semester 22COM203 - VLSI Signal Processing

Course Outcomes:

Upon successful completion of the course the students will be able to

- 1. Design parallel and pipelining processing systems for speed, power and area optimization.
- 2. Implement the pipelined and parallel architectures using folding and unfolding techniques.
- 3. Apply algorithmic strength reduction techniques such as Fast Convolution algorithms and FDCT algorithms for increasing the speed of computation.
- 4. Design DSP algorithms with reduced numerical strength by sub expression sharing techniques.

Unit:1	Introduction to DSP systems and Iteration Bound	6 Hours
Introduct	ion to DSP systems – Typical DSP algorithms, Data flow and Dependence graphs - critic	al path, Loop
bound, it	eration bound, Algorithms for computing iteration bound	
		_
Unit:2	Pipelining, Parallel processing and Retiming	6 Hours
Pipelinin	g and Parallel processing of FIR filters, Pipelining and Parallel processing for low power	r, Retiming –
definition	ns and properties, solving systems of inequalities, retiming techniques.	
Unit:3	Unfolding and Folding	6 Hours
Unfoldin	g – an algorithm for unfolding, properties of unfolding, sample period reduction and paralle	el processing
applicatio	on, Folding transformation, Register minimization techniques	
	in, i oranig transformation, register minimization teeninques	
	in i orang dansronnadon, register minimization teeninques	
••	Fast convolution	6 Hours
Unit:4		
Unit:4	Fast convolution om algorithm, modified Cook-Toom algorithm, winograd algorithm, iterated convol	
Unit:4 Cook-To	Fast convolution om algorithm, modified Cook-Toom algorithm, winograd algorithm, iterated convol	
Unit:4 Cook-To	Fast convolution om algorithm, modified Cook-Toom algorithm, winograd algorithm, iterated convol	
Unit:4 Cook-To convoluti Unit:5	Fast convolution om algorithm, modified Cook-Toom algorithm, winograd algorithm, iterated convol ion	lution, cyclic
Unit:4 Cook-To convoluti Unit:5	Fast convolution om algorithm, modified Cook-Toom algorithm, winograd algorithm, iterated convol- ion Algorithmic strength reduction in filters and transforms	lution, cyclic
Unit:4 Cook-To convoluti Unit:5	Fast convolution om algorithm, modified Cook-Toom algorithm, winograd algorithm, iterated convolution Algorithmic strength reduction in filters and transforms el FIR filter, 2-parallel fast FIR filter, DCT architecture	lution, cyclic
Unit:4 Cook-To convoluti Unit:5 2-paralle Unit :6	Fast convolution om algorithm, modified Cook-Toom algorithm, winograd algorithm, iterated convolution Algorithmic strength reduction in filters and transforms el FIR filter, 2-parallel fast FIR filter, DCT architecture	lution, cyclic 6 Hours 6 Hours

Contemporary Issues related to Topic

Total Lecture Hours

Elinelaury.	april .	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-23		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

Tex	tbooks					
1	VLSI Digital signal processing systems, Keshab K. Parhi, John Wiley and Sons, 2007 1st Edition.					
Ref	erence Books					
1	Digital Signal Processing with Field Programmable Gate Arrays, U. Meyer- Bease, 2nd edition 2004,					
	Springer.					
YC	CE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS]					
1						
MC	OOCs Links and additional reading, learning, video material					
1	https://nptel.ac.in/courses/108105157					

Etinelaway.	april	July 2022	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards	
YCCE-COM-24					

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

6 Hours

7 Hours

7 Hours

6 Hours

6 Hours

7 Hours

39 Hours

II Semester 22COM204 - Digital Image and Video processing

Course Outcomes:

Upon successful completion of the course the students will be able to

- 1. Understand and apply knowledge of various transforms and probability theory in image processing
- 2. Understand digital image processing fundamentals like enhancement, segmentation and encoding.
- 3. Analyze, apply and critically evaluate various image and video processing algorithms appropriate for practical applications
- 4. Learn the concepts of motion in video processing

Unit:1 Introduction to image processing

Fundamental steps in Digital image processing, Elements of visual perception, Image sensing and acquisition, Basic Concepts in Sampling and Quantization, representing digital images, Basic Relationships between pixels.

Unit:2 Image Enhancement

Some basic gray level transformations, Histogram Processing, Sharpening Spatial filters, Image Enhancement in the spatial and Frequency domain, Pseudo colouring

Unit:3 Segmentation

Point, Edge based segmentation, Boundary detection, Threshold based segmentation, Region based segmentation, Morphological operations.

Unit:4 Image Compression

Data redundancies Variable-length coding, Quantizers, Predictive coding, Transform coding, Image compression standards.

Unit:5 Video Processing

Basics of video processing, Motion analysis, Introduction to video compression, video compression standards, Moving object detection.

Unit :6 Motion Estimation

Optical flow, Use of motion in segmentation, Mesh based motion Estimation, Global Motion Estimation and Video coding.

Total Lecture Hours

Turcherry.	april .	July 2022	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards	
YCCE-COM-25					

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

Tex	Textbooks					
1	Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, Pearson, 4rd Edition					
2	A. Murat Tekalp, Digital Video Processing, first edition, Prentice Hall					
3	Yao wang, Joem Ostarmann and Ya – quin Zhang, "Video processing and communication ",1st edition, PHI					
Ref	erence Books					
1	William K. Pratt, Digital Image Processing, 4 th edition, A John Wiley & Sons, Inc., Publication, 2001.					
2	Anit K. Jain, Fundamentals of Digital Image Processing, Prentice Hall.					
YC	YCCE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS]					
1	http://103.152.199.179/YCCE/yccelibrary.html					
MO	MOOCs Links and additional reading, learning, video material					
1	http://nptel.iitm.ac.in/video.php?subjectId=117105079,					
2	www.imageprocessingplace.com					

Timberry.	april .	July 2022	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards	
YCCE-COM-26					

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

II Semester

22COM205 - Lab: Digital Image and Video processing

Course Outcomes:

Upon successful completion of the course the students will be able to

- 1. Implement various image processing and image enhancement techniques in MATLAB and identify their application areas.
- 2. Execute various image segmentation techniques.
- 3. Implement image and video compression techniques.

Sr. No.	Experiments based on
1	Obtaining row profile of a given row of an image in MATLAB.
2	Plotting histogram of an image in MATLAB
3	Adjusting the brightness of an image using a constant value in MATLAB
4	Calculating mean and variance of an image in MATLAB
5	Histogram Equalization of an image in MATLAB
6	Spatial Filtering: Applying low pass, high pass and median filters on an image in MATLAB
7	Pseudo Coloring an image using sinusoidal transforms in MATLAB
8	Detection of edges of an image using Canny Edge Detection algorithm in MATLAB.
9	Image Thresholding using OTSU Thresholding algorithm in MATLAB.
10	Region-based Image Segmentation using region growing in MATLAB
11	Apply Discrete Cosine Transform (DCT) on an image in MATLAB.
12	Motion Estimation for video sequence using full search algorithm.

Etingland.	apr	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-27		

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

6 Hours

6 Hours

6 Hours

6 Hours

6 Hours

6 Hours

36 Hours

II Semester

22COM206 - Wireless Communication Networks

Course Outcomes:

Upon successful completion of the course the students will be able to

- 1. Quantify causes and effects of path loss and signal fading on received signal characteristic and used various technique to improve signal quality and link performance.
- 2. Analyze various Multicarrier Modulation and Multiple access techniques for wireless communication
- 3. Analyze GSM & CDMA systems and understand the fundamentals of wireless networking.
- 4. Elaborate and compare various generations of mobile communication systems

Unit :1 Radio Propagation Characteristics

Reflection, diffraction and Scattering, Models for path loss, shadowing and multipath fading (delay Spread, coherence band width, coherence time, Doppler spread), Multipath Fading Models.

Unit:2 Diversity

Realization of Independent Fading Paths, Diversity System Model, Selection Combining, Threshold Combining, Maximal Ratio Combining, Equal-Gain Combining, Moment Generating Functions in Diversity Analysis, Diversity Analysis for MRC, Diversity Analysis for EGC and SC, Diversity Analysis for Non-coherent and Differentially Coherent Modulation, Transmitter Diversity

Unit:3 Multicarrier Modulation

Multicarrier Modulation ,Fading across Subcarriers , Frequency Equalization , Pre-coding , Adaptive Loading ,Coding across Sub channels RAKE receivers

Unit:4 Multiple access techniques for wireless communication

SDMA ,Packet radio protocols: Pure & Slotted ALOHA,CSMA

Unit:5 Wireless Systems and Standards

GSM-GSM services and features, Architecture, Radio Subsystem, GSM channel types, Frame structure and signal processing in GSM, CDMA-Forward CDMA channel, Reverse CDMA channel

Unit:6 Wireless Networks

3G Overview, 3GPP Network Architecture, 4G features and challenges, Introduction to wireless LANs - IEEE 802.11 WLANs, Blue tooth, Wi-Max, Zigbee **Contemporary Issues related to Topic**

Total Lecture Hours

Etimeleury.	apel	July 2022	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards	
YCCE-COM-28					

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

Tex	tbooks
1	Wireless communications - Rappaport. T.S, Pearson Education
2.	Wireless Communications – Andrea Goldsmith, Cambridge University Press.
Ref	erence Books
1	Fixed Broadband Wireless System Design - HARRY R. ANDERSON- John Wiley –India
2	3G Wireless Networks- Smith . P.E Tata McGraw Hill
3	Principles of Wireless Networks- Kaufmann Kaveth Pahlavan,. K Prashanth- Prentice Hall of India
YC	CE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS]
1	wireless Communication Andrea Goldsmith.pdf
2	wireless Communication by Rappaport (1).pdf
3	http://link.springer.com/openurl?genre=book&isbn=978-3-540-79040-2
4	http://link.springer.com/openurl?genre=book&isbn=978-0-7923-8126-6
5	http://link.springer.com/openurl?genre=book&isbn=978-3-540-76237-9
MC	OCs Links and additional reading, learning, video material
1	www.digimat.in/nptel/courses/video/106106167/L01.html
2	https://onlinecourses.nptel.ac.in/noc21_ee66/preview

Etimelanny.	apel	July 2022	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards	
YCCE-COM-29					

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

II Semester 22COM207 - Seminar

Etinelany.	Apr	July 2022	1.00	Applicable for	
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards	
YCCE-COM-30					

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward)

SoE No. 22COM-101

Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

II Semester

22COM211 - PE III: Millimeter wave communication

Course Outcomes:

Upon successful completion of the course the students will be able to

- 1. Understand Millimeter devices and circuits
- 2. Design antenna for Millimeter wave frequencies.
- 3. Gain Knowledge of Millimeter wave technology

Unit:1	Overview of millimeter waves	6 Hours
	eter wave characteristics and implementation challenges, radio wave propagation for mm wave eneration and amplification, HEMT, transistor configurations	e, Millimeter
Unit:2	Analog mm wave components	7Hours
•	mm wave components, Consumption factor theory, Trends and architectures for mm wa and DAC's	ve wireless,
Unit:3	Modulation for mm waves	6Hours
Modulat	tion for millimeter wave communications, Millimeter wave link budget, Transceiver architectu	ıre,
Unit:4	MIMO communications for mm waves	5 Hours
diversity	e MIMO Communications, Potential benefits for mm wave systems, Spatial, Temporal an y, Dynamic spatial, frequency and modulation allocation	
Unit:5	Antennas for mm wave communication	7 Hours
On-chip	a beam width, polarization, advanced beam steering and beam forming, mm wave design c and In package mm wave antennas, Techniques to improve gain of on-chip antennas, Impler we in adaptive antenna arrays	-
Unit :6	Usage of mm waves for 5G	7 Hours
	to Device communications over 5G systems, Design techniques of 5G mobile aporary Issues related to Topic	
Total L	ecture Hours	36 Hours

Etinelanny.	all	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-31		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022

(Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering **M.Tech in Communication Engineering**

Tex	tbooks				
1	K.C. Huang, Z. Wang, "Millimeter Wave Communication Systems", Wiley-IEEE Press, March 2011.				
2	Robert W. Heath, Robert C. Daniel, James N. T.S. Rappaport, Murdock, "Millimeter Wave Wireless				
	Communications", PH, 2014.				
3.	Xiang, W.Zheng, K. Shen, X.S, "5G Mobile Communications", Springer, 2016.				
Ref	erence Books				
1	Athanasios G.Kanatos, Konstantina S.Nikita, Panagiotis Mathiopoulos, "New Directions in Wireless				
	Communication Systems from Mobile to 5G", CRC Press.				
	Belov, L. ASmolskiy, Sergey MKochemasov, V. N., Handbook of RF, Microwave, and Millimeter-wave				
	Components, Artech House Publishers				
YC	YCCE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS]				
1	http://link.springer.com/openurl?genre=book&isbn=978-0-387-23665-0				
2.	http://link.springer.com/openurl?genre=book&isbn=978-1-4020-6998-7				
3	http://link.springer.com/openurl?genre=book&isbn=978-1-4020-7531-5				
MC	MOOCs Links and additional reading, learning, video material				
1	https://nptel.ac.in/courses/117105139				
L					

Finelans.	aper	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-32		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) **Department of Electronics & Telecommunication Engineering M.**Tech in Communication Engineering

SoE No. 22COM-101

II Semester

22COM212 - PE III: Real Time Operating System

Course Outcomes:

Upon successful completion of the course the students will be able to

1) Analyze the various real time systems with reference model

2) Discuss the various functional parameters, resources and scheduling.

3) Detect multiple Faults and reduce error containment.

4) Explore the various Memory management and Input/Output system process management

Unit :1 Overview

Overview Of Commands, File I/O. (Open, Create, Close, Lseek, Read, Write), Process Control (Fork, Vfork, Exit, Wait, Waitpid, Exec), Signals, Inter Process Communication (Pipes, FIFOs, Message Queues, Semaphores, Shared Memory).

Unit:2 | Real Time Systems

Typical Real Time Application, Hard Vs Soft Real Time Systems, a Reference Model of Real Time Systems: Processors and Resources, Temporal Parameters of Real Time Workload, Periodic Task Model, Precedence Constraints and Data Dependency

Functional Parameters Unit:3

Functional Parameters, Resource Parameters of Jobs and Parameters of Resources Clock Driven, Weighted Round Robin, Priority Driven, Dynamic Vs State Systems, Effective Release Times and Dead Lines, Offline Vs Online Scheduling.

Time Services and Scheduling Mechanisms Unit:4

Overview, Time Services and Scheduling Mechanisms, other Basic Operating System Function, Processor Reserves and Resource Kernel.Capabilities of Commercial Real Time Operating Systems.

Unit:5 **Fault and Error Containment**

Introduction, Fault Causes, Types, Detection, Fault and Error Containment, Redundancy: Hardware, Software, Time. Integrated Failure Handling.

Unit:6 **Memory Managements and Scheduling**

Memory Managements Task State Transition Diagram, Pre-Emptive Priority, Scheduling, Context Switches -Semaphore - Binary Mutex, Counting: Watch Dogs, I/O System Process Management, Interrupt Management, and Synchronization.

Contemporary Issues related to Topic

Total Lecture Hours

Elinelanny.	aller .	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards

YCCE-COM-33

6 Hours

6 Hours

6 Hours

- **6 Hours**
- 6 Hours

6 Hours

36 Hours

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

Tex	Textbooks		
1	Real Time Systems, 2013, Jane W.S. Liu, Pearson		
2	Real Time Systems, C.M.Krishna, KANG G. Shin, McGraw.Hill		
Ref	erence Books		
1	Advanced Unix Programming Richard Stevens		
YC	YCCE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS]		
1			
MO	MOOCs Links and additional reading, learning, video material		
1			

Etinglands.	der	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-34		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

II Semester

22COM221 - PE IV: Selected Topics in Communication Systems

Course Outcomes:

Upon successful completion of the course the students will be able to

- 1. Understand and design physical modelling of channels in free space along with time varying systems.
- 2. Compare and analyse Non-coherent and Coherent detection Time diversity.
- 3. Elaborate key features of various standards related to modelling of MIMO,SIMO,MISO
- 4. Understand and analyse V-BLAST and D-BLAST architecture.
- 5. Design and understand multiplexing trade off -Universal code design for scalar channels, parallel channels.

Unit :1 PHYSICAL MODELING FOR WIRELESS CHANNELS

Free space, fixed transmit and receive antennas, moving antenna, Reflection from wall, Reflection from a ground plane, Power decay with distance and shadowing ,Moving antenna with multiple reflectors Input /output model of the wireless channel: linear time-varying system, Baseband equivalent model, A discrete-time baseband model, Degrees of freedom, Additive white noise Time and frequency coherence :Doppler spread and coherence time, Delay spread and coherence

bandwidth.

Unit:2 DETECTION IN A RAYLEIGH FADING CHANNEL

Non-coherent and Coherent detection Time diversity Antenna diversity: Receive diversity, Transmit diversity, MIMO. Frequency diversity: Single-carrier with ISI equalization, Direct-sequence spread-spectrum.

Unit:3 AWGN CHANNEL CAPACITY

Channel Distribution Information (CDI), Channel Side Information at Receiver, Channel Side Information at Transmitter and Receiver, Capacity with Receiver Diversity Capacity of Frequency: Selective Fading Channels-Linear time-invariant, Time-Varying Channels.

Unit:4 MULTIPLEXING CAPABILITY OF DETERMINISTIC MIMO CHANNELS

6 Hours

6 Hours

6 Hours

6 Hours

6 Hours

Capacity via singular value decomposition, Rank and condition number. Physical modelling of MIMO channels: Line-of-sight SIMO channel ,Line-of-sight MISO channel , Antenna arrays with only a line-of-sight path ,Geographically separated antennas, Line-of-sight plus one reflected path Modelling of MIMO fading channels.

Unit:5 V-BLAST AND D-BLAST ARCHITECTURE

The V-BLAST architecture Fast fading MIMO channel: Capacity with CSI at receiver and Full CSI. Receiver architectures: Linear decorrelator, Successive cancellation, Linear MMSE receiver D-BLAST: an outage-optimal architecture, Coding across transmit antennas: D- BLAST

Etinelanny.	der	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-35		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

Unit:6 DIVERSITY-MULTIPLEXING TRADEOFF

6 Hours

Scalar Rayleigh channel, Parallel Rayleigh channel, MISO Rayleigh channel, 2×2 MIMO Rayleigh channel, nt×nr MIMO i.i.d. Rayleigh channel Universal code design for optimal diversity :multiplexing trade off - Universal code design for scalar channels, parallel channels, MISO channels, MIMO channels Uplink with multiple receive antennas: Space-division multiple access ,SDMA with multiple transmit antennas.

Total Lecture Hours

36 Hours

Te	extbooks
1	Fundamentals of Wireless Communications, David Tse, Pramod Viswanath CambridgeUniversity Press
Re	eference Books
1	Coding for Wireless Channels 2007 E. Biglieri, Springer
2	MIMO Wireless Communications 2007 E. Biglieri, Andrea Cambridge University Press
3	WIRELESS COMMUNICATIONS 2005 Goldsmith Cambridge University Press
Y	CCE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS]
1	http://103.152.199.179/YCCE/Suported%20file/Supprted%20file/ecopies%20of%20books/ Electronics%20and%20Telecommunication/Communication%20systems%20(analog%20and%20digital)%20(%20PDFDrive .com%20).pdf
2	http://103.152.199.179/YCCE/Suported%20file/Supprted%20file/e copies%20of%20books/Electronics%20and%20Telecommunication/Rappaport%20- %20Wireless%20Communications,Principles%20and%20Practice-ISBN%200130422320.pdf
3	http://103.152.199.179/YCCE/Suported%20file/Supprted%20file/e- copies%20of%20books/Electronics%20and%20Telecommunication/WirelessCommunicationsbyTheodoreS.R appaportz.pdf
Μ	OOCs Links and additional reading, learning, video material
1	https://www.youtube.com/watch?v=70wpxrp3tAQ&t=1206s
2	https://www.youtube.com/watch?v=Bg_4BSuXK_0

Turcharry.	april .	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
		YCCE-COM-36		

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) **Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering**

SoE No. 22COM-101

II Semester

- PE IV: Micro Electro Mechanical Systems ET

Course Outcomes:

Upon successful completion of the course the students will be able to

- 1. Design parallel and pipelining processing systems for speed, power and area optimization.
- 2. Implement the pipelined and parallel architectures using folding and unfolding techniques.
- 3. Apply algorithmic strength reduction techniques such as Fast Convolution algorithms and FDCT algorithms for increasing the speed of computation.
- 4. Design DSP algorithms with reduced numerical strength by sub expression sharing techniques.

Unit:1 Intrinsic Characteristic of MEMS

Energy Domains & Transducers. Sensors & Actuators. Introduction to Micro fabrication- silicon based MEMS processes. New Materials- Review of Electrical and Mechanical concepts in MEMS. Semiconductor devices-Stress & Strain analysis- Flexural beam bending, Torsional deflection

Unit:2 Electrostatic sensors

Parallel Plate capacitors, Applications, Interdigital Finger capacitor, Com drive devices, Thermal sensing and Actuation, Thermal Expansion, Thermal couples, Thermal resistors, Applications, Magnetic Actuators, Micro magnetic Components, Case studies of MEMS in magnetic actuators

Unit:3 | Piezoelectric sensors and actuators

Piezo resistive sensors, Piezo resistive sensor materials, Stress analysis of mechanical elements, Applications to Inertia, Pressure, Acoustic, Tactile and Flow sensors, Piezoelectric sensors and actuators, Piezoelectric effects, **Piezoelectric** materials

Unit:4 Silicon Anisotropic Etching

Silicon Anisotropic Wet Etching, Dry Etching of Silicon, Plasma Etching, Deep reaction Ion Etching (DRIE), Isotropic Wet Etching, Gas phase Etchants-Case studies, Basic surface micromachining processes, Structural and sacrificial materials, Acceleration of sacrificial Etch, Striction and Anistriction methods, Assembly of 3D MEMS, Foundry process

Unit:5 | Polymer MEMS

Polymers in MEMS ,Polimide, SU-8, Liquid Crystal Polymer(LCP), PDMS, PMMA, Parylene, Flurocarbon, Application to acceleration, Pressure, Flow and Tactile sensors

Unit :6 **Optical MEMS**

Optical MEMS, Lensens and Mirrors, Actuators for Active Optical MEMS. **Contemporary Issues related to Topic**

Total Lecture Hours

Fineleway.	der .	July 2022	1.00	Applicable for
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards
VCCE COM 27				

YCCE-COM-37

6 Hours

6 Hours

6 Hours

6 Hours

6 Hours

36 Hours

6 Hours

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

Tex	Textbooks			
1	Foundations of MEMS, Chang Liu, Pearson Education Inc, 2006.			
Ref	erence Books			
1	An introduction to micro electro mechanical system design, NadimMaluf, Artech House,2000			
2	The MEMS Handbook Mohames Gad-el-Hak, CRDC press, 2000			
YC	YCCE e- library book links [ACCESSIBLE FROM COLLEGE CAMPUS]			
1				
MO	OCs Links and additional reading, learning, video material			
1	https://nptel.ac.in/courses/117105082			

Etinelaway.	de	July 2022	1.00	Applicable for			
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards			
YCCE-COM-38							

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

III Semester 22COM301– Project Phase-I

Timbers.	Apr	July 2022	1.00	Applicable for			
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards			
YCCE-COM-39							

Yeshwantrao Chavan College of Engineering (An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) M.Tech SoE and Syllabus 2022 (Scheme of Examination w.e.f. 2022-23 onward) Department of Electronics & Telecommunication Engineering M.Tech in Communication Engineering

SoE No. 22COM-101

IV Semester 22COM401– Project Phase-II

Timberry.	apr	July 2022	1.00	Applicable for			
Chairperson	Dean (Acad. Matters)	Date of Release	Version	AY 2022-23 Onwards			
YCCE-COM-40							