CO M.Tech. Communication Engineering

Course Objective	Course Outcome			
The student should be able to	The student will be able to			
	1) Calculate probabilities by			
1) Understand probability laws.	applying probability laws.			
2) Understand concept of random variable and	2) Derive probability distributions of functions of			
advanced density functions.	random variables.			
3) Learn various types of distributions and	3) Identify an appropriate probability distribution			
expectation.	for a given discrete or continuous random			
4) Understand Random vectors and random	variable.			
processes.	4) Determine covariance and spectral density of			
	stationary random processes.			

ET3901–Mathematical Foundations for Communication Engineering

ET3902 – Passive RF Circuits and Systems

Course Objective	Course Outcomes			
Students should be able to	Students will be able to			
 Understand various transmission lines and its characteristics. Study various microwave network 	 Analyze various transmission lines and its characteristics. Analyze various microwave network 			
models and passive components.	models and passive components.			
3) Learn various switches, phase shifters and MIC filters.	 Apply the knowledge of various switches, phase shifters and MIC filters. 			
4) Understand various MMIC and MEMS technologies.	4) Explorevarious MMIC and MEMS technologies.			

ET3903 – Lab: Passive RF Circuits and Systems

Course Objective	Course Outcomes			
Students should be able to	Students will be able to			
1) Understand various transmission lines and its characteristics.	1) Analyze various transmission lines and its characteristics.			
2) Study various microwave network models and passive components.	2) Analyze various microwave network models and passive components.			
3) Learn various switches, phase shifters and MIC filters.	 Apply the knowledge of various switches, phase shifters and MIC filters. 			
4) Understand various MMIC and MEMS technologies.	4) Explore various MMIC and MEMS technologies.			

Course Objective	Course Outcomes				
Students should be able to	Students will be able to				
1) Learn Baseband representation, reception and probability of error	1) Distinguish various digital modulation techniques.				
2) Understand the transmission errors in digital communication systems	2) Analyze the probability of errors in digital communication systems.				
3) Understand the concept of spread spectrum modulation, its types and applications.	3) Apply spread spectrum modulation for various applications of communication systems.				
 4) Understand the practical applications of Multichannel and multicarrier communication systems 	 Distinguish Multichannel and multicarrier communication systems 				

ET3904 – Advanced Digital Communication

ET3905 – Lab: Advanced Digital Communication

Course Objective	Course Outcomes					
Students should be able to	Students will be able to					
1) Learn Baseband representation, reception and probability of error	1) Distinguish various digital modulation techniques.					
2) Understand the transmission errors in digital communication systems	2) Analyze the probability of errors in digital communication systems.					
3) Understand the concept of spread spectrum modulation, its types and	3) Apply spread spectrum modulation for various applications of communication					
applications.	systems.					

4)	Unc	lerstand the pr	actical	applications	4)	Distinguish Multichannel and multicarrier
	of	Multichannel	and	multicarrier		communication systems
	com	munication sys	stems			

Course Objective	Course Outcomes			
Students should be able to	Students will be able to			
 Introduce the concept and need of wiener filters Learn the fundamentals of adaptive filters and application e.g noise cancellation, interference cancelling 	 Devise filtering solutions for optimising the cost function using wiener filters. Analyse convergence and stability issues using LMS algorithm and its transform domain. 			
etc.	3) Evaluate the performance Recursive Least-			
3) Understand basic principles transform domainadaptive filters by	Squares (RLS) techniques to improve convergence behaviour.			
using mathematical perspective.	4) Devise filtering solutions for optimising			
4) Study adaptive signal processing algorithms (e.g., the LMS algorithm).	using Kalman Filtering, Adaptive beam forming& FTRLS algorithm.			
5) Study Recursive least squares algorithms & FTRLS algorithm.				

ET3906 – Adaptive Signal Processing

ET3907 –	Lab:	Ada	ptive	Signal	Processing

Course Objective	Course Outcomes			
Students should be able to	Students will be able to			
1) Introduce the concept and need of wiener filters	1) Devise filtering solutions for optimising the cost function using wiener filters.			
2) Learn the fundamentals of adaptive filters and application e.g noise cancellation, interference cancelling	2) Analyse convergence and stability issues using LMS algorithm and its transform domain.			
etc.	3) Evaluate the performance Recursive Least-			
3) Understand basic principles transform domain adaptive filters by using mathematical perspective.	Squares (RLS) techniques to improve convergence behaviour.			

4)	Study	adaptive	signal	processing	4)	Devise	e filtering	solutions	for	optimising
	algorith	ıms (e.g., tł	ne LMS	algorithm).		using	Kalman F	Filtering,	Ada	ptive beam
5)	Study	Recursiv	e leas	t squares		formin	g& FTRLS	algorithn	n.	
	algorith	ıms & FTR	LS algo	rithm.						

ET3908 – PE I: Error Control Coding

Course Objective	Course Outcomes			
Students should be able to	Students will be able to			
1. Understand the need for error correction in data communication and storage systems.	 Apply the knowledge of error correction in data communication and storage systems. Analyze numerical operations in finite fields 			
2. Understand numerical operations in finite fields by using both the exponential and polynomial representations of finite field elements	by using both the exponential and polynomial representations of finite field elements.3. Analyze an ability to compare and contrast the strengths and weaknesses of various			
3. Study an ability to compare and contrast the strengths and weaknesses of various errors correcting code for a given application.	 errors correcting code for a given application. 4. Demonstrate competence in analyzing and evaluating the practice of different error correcting coded in digital communication 			
4. Study different error correcting codes in digital communication system.	system.			

ET3909 – PE I: Embedded Systems & DSP Processor

Course Objective	Course Outcomes	
Students should be able to	Students will be able to	
1) Equip students with basic mathematical and statistical techniques commonly used in pattern recognition.	1) Identify and describe pattern recognition techniques and their roles in building intelligent machines	
2) Understand clustering and probability theory to handle uncertainty and solve engineering problems	2) Recognize the feasibility of applying pattern recognition methodology for a particular problem in pattern classification and	
3) Introduce to the various pattern	regression	
recognition algorithms for a given problem.	3) Apply clustering and probability theory to handle uncertainty and solve engineering problems	
	4) Evaluate and compare solutions by various	
	pattern recognition approaches for a given problem.	

ET3911 – PE II: Multimedia Communications

Course Objective	Course Outcomes
Students should be able to	Students will be able to
1) Understand basic concept of digital image representation	1) Describe features of various image file formats and image data type
2) Learn basics of video and digital audio signal	2) Explain characteristics of video signals like NTSC,PAL,SECAM Implement and describe
3) Understand the concepts of image	various image compressiontechniques
compression	3) Explain various video compression
4) Understand the concepts of video	techniques
compression	4) Explain various audio compression
5) Understand the concepts of audio compression	techniques

ET3912 – PE II: Active RF Devices and Circuits

Course Objective	Course Outcomes
Students should be able to	Students will be able to
1) Understand active devices, and their modeling.	 Explain different types RF Diodes, Linear &Non linear Diode Models. Design Two Port power gain, Amplifier Stability and for Specified Gain

2)	Perform Amplifier Stability ,Stability	3)	Devise Characteristics and equivalent circuit
	Circle and Single stage amplifier design		of detector and power amplifier.
	for specified gain.	4)	Perform measurements on mixer, Oscillator
3)	An understanding amplifier design		and PLL
	unilateral and bilateral cases and for		
	maximum gain.		
4)	Learn detector and power amplifiers.		
5)	Understand theory and characteristics of		
	mixer, oscillator, PLL.		

ET3913 – PE II: Soft Computing

Course Objective	Course Outcomes		
Students should be able	Students will be able to		
 To have general understanding of soft computing methodologies including artificial neural networks, genetic algorithms, fuzzy sets and fuzzy logic systems. To elaborates the basic concept of Genetic algorithm, genetic inheritance operator, the performance of algorithm and applications. To introduce the fundamentals and explore the architecture of supervised and unsupervised neural networks. To discuss the basic concept of fuzzy set theory and understand the hybrid 	 Identify and describe soft computing techniques and their roles in building intelligent machines Recognize the feasibility of applying a soft computing methodology for a particular problem andApply genetic algorithms to optimization problems. Identify supervised/unsupervised neural networks algorithms to solve pattern classification problems Apply fuzzy logic and reasoning to handle uncertainty and solve engineering problems 		
interface			

II Semester

ET3915 – Advanced Antenna Theory

Course Objective	Course Outcome
The student should be able to	The student will be able to
1) Learn the basic principles and of antenna	1) Evaluate various parameters of antennas.
parameters.	2) Analyze performance parameters of various
2) Design and analyze antennas & Arrays.	antennas & antenna array.
3) Design and Analyze Planer antenna	3) Understand smart antenna measurement
4) Design & Analyze aperture, Reflector	techniques.
Antennas	4) Design and analyze various antenna
5) Study different Smart antenna techniques	

ET3916 – Lab: Advanced Antenna Theory

Course Objective	Course Outcome
The student should be able to	The student will be able to
1) Learn the basic principles and of antenna	1) Evaluate various parameters of antennas.
parameters.	2) Analyze performance parameters of various
2) Design and analyze antennas & Arrays.	antennas & antenna array.
3) Design and Analyze Planer antenna	3) Understand smart antenna measurement
4) Design &Analyze aperture, Reflector	techniques.
Antennas	4) Design and analyze various antenna
5) Study different Smart antenna techniques	

ET3917 –VLSI Signal Processing

Co	ourse Objective	Co	urse Outcome
Th	e student should be able	Th	e student will be able to
1)	To understand basic concepts of implementing DSP algorithms in VLSI	1)	Design parallel and pipelining processing systems for speed, power and area optimization.
2)	To learn about the concept of pipelining and parallel processing in VLSI.	2)	Implement the pipelined and parallel architectures using folding and unfolding techniques.
3)	To understand the analysis of VLSI system with high speed and low power.	3)	Analyse Systolic Design for Space Representations containing Delays

 4) To equip the students with knowledge of Systolic Design for Space Representations containing Delays 5) To learn the algorithms for numeric and algorithmic strength reduction. 	 Apply algorithmic strength reduction techniques such as Fast Convolution algorithms and FDCT algorithms for increasing the spee of computation. Design DSP algorithms with reduced numericat strength by subexpression sharing techniques.
--	---

Course Objective	Course Outcome
The student should be able	The student will be able to
 Learn the fundamentals of digital image processing algorithms and filtering methods. Study the performance of digital images in frequency domain. Learn restoration, compression and segmentation of digital images through 	 Apply basic image processing algorithms for image enhancement. Interpret the digital images in frequency domain by using various transform techniques. Understand noise models and degradation process for image restoration
various algorithms4) Understand the process of image representation and description	4) Implement the algorithms for image compression and segmentation.Implement the algorithms for image representation and description

ET3918- Digital Image Processing

ET3918–Lab : Digital Image Processing

Course Objective	Course Outcome
The student should be able	The student will be able to
 Learn the fundamentals of digital image processing algorithms and filtering methods. Study the performance of digital images in frequency domain. 	 Apply basic image processing algorithms for image enhancement. Interpret the digital images in frequency domain by using various transform techniques.
segmentation of digital images through various algorithms	3) Understand noise models and degradation process for image restoration4) Implement the algorithms for image
4) Understand the process of image representation and description	compression and segmentation. Implement the algorithms for image representation and description

ET3920 – Wireless Communications & Networks

Course Objective	Course Outcome
The student should be able to	The student will be able to
	1) Quantify causes and effects of path loss and
1) Understand the concept of radio propagation	signal fading on received signal characteristic
, fading and different techniques to improve	and used various technique to improve signal
signalquality and link performance.	quality and link performance.
2) Understand various Multicarrier Modulation	2) Analyze various Multicarrier Modulation and
and Multiple access techniques for wireless	Multiple access techniques for wireless
communication	communication
3) Learn Wireless Systems and Standards	3) Analyze GSM & CDMA systems
4) Know various generations of mobile	andunderstand the fundamentals of wireless
communication systems	networking.
	4) Elaborate and compare various generations of
	mobile communication systems

ET3921 –PE III: Selected Topics in Communication Systems

Course Objective	Course Outcome	
The student should be able to	The student will be able to	
1) Make the students understand the fundamentals physical modeling of channels in free space along with time varying systems.	1) Understand and design physical modeling of channels in free space along with time varying systems.	
 Understand the working of time diversity detection in a Rayleigh fading channel and to analyze orthogonal frequency division multiplexing. 	 Compare and analyze Non-coherent and Coherent detection Time diversity. Elaborate key features of various standards related to modeling of MIMO SIMO MISO 	
 Understand the modeling of MIMO,SIMO,MISO along with time varying channels and selective fading. 	 4) Understand and analyze V-BLAST and D- BLAST architecture 5) Design and understand multiplexing tradeoff - 	
4) Understand and compare parallel and scalar channels.	Universal code design for scalar channels, parallel channels	

Course Objective	Course Outcome	
The student should be able to	The student will be able to	
	1) Identify digital speech	
1) Learn speech production mechanism.	productionmodel.	
2) Understand time and frequency domain	2) Process speech using time and	
method for speech processing.	frequency domain method.	
3) Learn linear predictive coding analysis of	3) Analyze speech by linear predictive	
speech.	coding method.	
4) Understand various speech and speaker	4) Recognize speech and speaker.	
recognition methods.		

Course Objective	Course Outcome
The student should be able to	The student will be able to
1) Understand real time systems with	1) Analyzethevarious real time systems with
reference model	reference model
2) Know functional parameters, resources	2) Discuss the various functional parameters
and scheduling.	, resources and scheduling.
3) Study Faults and error containment.	3) Detect multiple Faults and reduce error
4) Learn Memory management and I/O	containment.
system process management.	4) Explore the various Memory management
	and Input/Output system process
	management

ET3924 – PE III: Real Time Operating System

Course Objective	Course Outcome	
The student should be able to	The student will be able to	
1) Understand different networks and	1) analyze different networks and network	
network topologies	topologies	

ET3925 – PE IV: High Speed Networks

2)	Know protocols used in high speed	2)	Compare different protocols used in high
	networks		speed networks
3)	Study Network design issues	3)	Solve Network design issues
4)	Study optical sensors and Networks	4)	Compare optical sensors and Networks

ET3926 – PE IV: Wireless Sensor Networks

Course Objective	Course Outcome
The student should be able to	The student will be able to
 To Understand the basic WSN technology and supporting protocols, with emphasis placed on standardization basic sensor systems and provide a survey of sensor technology Understand the medium access control protocols and address physical layer issues Learn key routing protocols for sensor networks and main design issues Learn transport layer protocols for sensor networks, and design requirements Understand the Sensor management, sensor network middleware, operating systems. 	 Understand and explain common wireless sensor node architectures. Carry out simple analysis and planning of WSNs. Demonstrate knowledge of MAC protocols developed for WSN. Demonstrate knowledge of routing protocols developed for WSN. Understand and explain mobile data- centric networking principles. Be familiar with WSN standards.

ET3928 – Seminar

Course Objective	Course Outcome
The student should be able to	The student will be able to
	1) Write effectively in English.
1) Gain profound knowledge about English language.	 Analyze logically and critically on different issues.
2) Learn logical and critical reasoning skills	3) Solve quantitative problems effectively.
 3) Know mathematical formulae for quantitative reasoning 4) Acquire, sound technical knowledge 	4) Apply fundamentals of Electronics and Telecommunication for practical
4) Acquire sound technical knowledge	applications.

III Semester

ET3939 - Project Phase-I

	COURSE OBJECTIVE		COURSE OUTCOMES
1.	To provide the students the academic	1.	An ability to understand the advances in
	environment to carry out literature survey of		structural engineering.
	advanced topics in structural engineering	2.	An ability to understand the use of modern tools.
2.	To motivate the students to use the modern tools	3.	An ability to work independently and in a team
	and software.		for effective communication
3.	To provide the students the understanding of	4.	An ability to understand the importance of
	various aspects like effective communication		lifelong learning.
	skills, working independently and in a team and		
	the importance of lifelong learning etc. to carry		
	out project.		

IV Semester

ET3940 - Project Phase-II

COURSE OBJECTIVE	COURSE OUTCOMES
1. To provide the students the academic environment to carry out literature survey of advanced topics in structural engineering.	 An ability to understand the advances in structural engineering. An ability to solve real world structural
 To provide the students the understanding of real world structural engineering problems and their solution. To motivate the students to use the modern tools and software. To provide the students the understanding of various aspects like effective communication skills, working independently and in a team and the importance of lifelong learning etc. to carry out 	 engineering problems. 3. An ability to understand the importance of lifelong learning and the use of modern tools. 4. An ability to work independently and in a team for effective communication.
project.	